MATH 54 Quiz 2 (09/08)

Name:

Please write legibly and explain your work clearly. Answers without explanations may receive less (or no) credit.

Problem 1. (4 points) True or False?

T—F. There exist two vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ in \mathbb{R}^3 so that $|\vec{\mathbf{u}} + \vec{\mathbf{v}}| = |\vec{\mathbf{u}}| + |\vec{\mathbf{v}}|$. Solution: True. For example, take the vectors $\vec{\mathbf{u}} = \vec{\mathbf{v}} = \langle 1, 0, 0 \rangle$. Then $|\vec{\mathbf{u}} + \vec{\mathbf{v}}| = |\langle 2, 0, 0 \rangle| = 2 = |\langle 1, 0, 0 \rangle| + |\langle 1, 0, 0 \rangle| = |\vec{\mathbf{u}}| + |\vec{\mathbf{v}}|.$

T—F. For any two vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ in \mathbb{R}^3 , $|\vec{\mathbf{u}} \times \vec{\mathbf{v}}| = |\vec{\mathbf{v}} \times \vec{\mathbf{u}}|$. **Solution:** True. Using the fact that $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = -\vec{\mathbf{v}} \times \vec{\mathbf{u}}$, we deduce that $|\vec{\mathbf{u}} \times \vec{\mathbf{v}}| = |-\vec{\mathbf{v}} \times \vec{\mathbf{u}}| = |\vec{\mathbf{v}} \times \vec{\mathbf{u}}|$.

T—F. Two lines in \mathbb{R}^3 either intersect or are parallel.

Solution: False. For example, consider the x-axis and the line x = 0, z = 1 (i.e. the y-axis, but shifted up by 1 from the origin).

T—F. In \mathbb{R}^3 , if two lines are parallel to a plane then the lines are parallel.

Solution: False. For example, consider the xy-plane, the x-axis as one line, and the y-axis as the other line.

Problem 2. (4 points) Suppose you throw a frisbee and that it follows the trajectory

$$\mathbf{r}(t) = \left\langle 4\ln(t+1), \ \frac{t^2}{12}, \ \frac{-1}{2}(t-1)^2 + 2 \right\rangle, \quad 0 \le t \le 3$$

What is the equation of the tangent line at the point where the frisbee is flying horizontally?

Solution: start by computing

$$\mathbf{r}'(t) = \left\langle \frac{4}{t+1}, \ \frac{t}{6}, \ -(t-1) \right\rangle.$$

This is travelling horizontally when z'(t) = 0, which is when $-(t-1) = 0 \implies t = 1$. Thus the parametric equation of the line is

$$\mathbf{r}(1) + t\mathbf{r}'(1) = \left\langle 4\ln 2, \frac{1}{12}, 2 \right\rangle + t\left\langle 2, \frac{1}{6}, 0 \right\rangle$$

Problem 3. Let $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, and $\vec{\mathbf{c}}$ all be vectors in \mathbb{R}^3 such that

- i. $\vec{\mathbf{a}}$ is orthogonal to $\vec{\mathbf{c}}$
- ii. $\vec{\mathbf{b}}$ is orthogonal to $\vec{\mathbf{c}}$
- iii. $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are not parallel.
- iv. $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \neq 0$.
- (a) (1 point) What is the angle between **b** and **c**?
 Solution: π/2, because they are orthogonal.
- (b) (1 point) What are possible angles between \vec{a} and \vec{b} ?

Solution: $(0, \pi/2) \cup (\pi/2, \pi)$, because they are not orthogonal (hence the angle is not $\pi/2$), and because they are not parallel (hence the angle is not 0 or π).

(c) (2 points) Create example vectors $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, and $\vec{\mathbf{c}}$ that satisfy properties (i) through (iv). Justify that your vectors satisfy each requirement.

Solution: three vectors that work are $\vec{\mathbf{a}} = \langle 1, 0, 0 \rangle$, $\vec{\mathbf{b}} = \langle 1, 1, 0 \rangle$, and $\vec{\mathbf{c}} = \langle 0, 0, 1 \rangle$. We verify the 4 conditions:

- i. $\vec{\mathbf{a}} \cdot \vec{\mathbf{c}} = 1(0) + 0(0) + 0(1) = 0$ so they are orthogonal.
- ii. $\vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = 1(0) + 1(0) + 0(1) = 0$ so they are orthogonal.
- iii. $\vec{\mathbf{a}} = k\vec{\mathbf{b}} \implies 1 = k$ and 0 = k, which doesn't have a solution. Thus $\vec{\mathbf{a}} \neq k\vec{\mathbf{b}}$ for any k, so they are not parallel.
- iv. $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 1(1) + 0(1) + 0(0) = 1 \neq 0.$