Graduate Seminar on Advanced Topics in PDE (S5B1) Homogenization of Partial Differential Equations

Prof. Dr. Tim Laux tim.laux@hcm.uni-bonn.de

Although seemingly homogeneous to the naked eye, most materials are heterogeneous on small scales. When modelling such a physical situation, one commonly derives a PDE resolving the microscopic scale, leading to a dependence on a small parameter $\varepsilon > 0$. This ε -dependent PDE is usually difficult to study as its solution oscillates on the small scale ε . The aim of homogenization is to understand the "effective" large scale behaviour in the limit $\varepsilon \to 0$.

A concrete example is a material made up of two components with electrical conductances A_1 and A_2 , respectively. Suppose this "mixture" happens on the microscopic scale ε , for example by assuming the conductance matrix to be of the form $a_{\varepsilon}(x) = \chi(\frac{x}{\varepsilon})A_1 + (1-\chi(\frac{x}{\varepsilon}))A_2$ for some 1-periodic characteristic function χ . Then our question of homogenization amounts to studying the behaviour as $\varepsilon \to 0$ of the solutions u_{ε} to the uniformly elliptic PDEs

$$-\nabla \cdot \left(a_{\varepsilon} \nabla u_{\varepsilon}\right) = f$$

with source f (and some boundary conditions). In this particular case, one can show that homogenization takes place, i..e, the limit $u_0 := \lim_{\varepsilon \to 0} u_{\varepsilon}$ exists and u_0 solves a much simpler constant-coefficient PDE of the form

$$-\nabla \cdot \left(a_0 \nabla u_0\right) = f,$$

where the effective coefficient field a_0 has to be determined. In the one-dimensional case, a_0 is simply the harmonic (!) mean of $a_{\varepsilon}|_{\varepsilon=1}$. In higher dimensions, it is given implicitly by yet another PDE—the "cell problem"—, which furthermore gives insight into the oscillations of u_{ε} on the microscopic scale ε .

In this compact 3-day seminar, we will discuss the homogenization of several types of PDEs, ranging from the elliptic case explained above to Hamilton-Jacobi and hyperbolic equations. Along the way, we will learn a wide range of analytical techniques to prove (or disprove) that homogenization takes place.

Prerequisites: Working knowledge in Functional Analysis and PDEs.

Venue: March 25–27. Exact times will be decided during the preliminary meeting.

Preliminary meeting: 13–14 on Tuesday, January 28 in N0.008.