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Abstract

In this expository paper we discuss a project regarding the string topology of a manifold, that

was inspired by recent work of Moore-Segal [28] and Costello [17] on “open-closed topological

conformal field theories”. In particular, given a closed, oriented manifold M , we describe the

“string topology category” SM , which is enriched over chain complexes over a fixed field k. The

objects of SM are closed, oriented submanifolds N of M , and the space of morphisms between N1

and N2 is a chain complex homotopy equivalent to the singular chains C∗(PN1,N2) where PN1,N2 ,

is the space paths in M that start in N1 and end in N2. The composition pairing in this category

is a chain model for the open string topology operations of Sullivan [35], and expanded upon

by Harrelson [23] and Ramirez [31]. We will describe a calculation yielding that the Hochschild

homology of the category SM is the homology of the free loop space, LM . Another part of the

project is to calculate the Hochschild cohomology of the open string topology chain algebras

C∗(PN,N ) when M is simply connected, and relate the resulting calculation to H∗(LM). These

calculations generalize known results for the extreme cases of N = point and N = M , in which

case the resulting Hochschild cohomologies are both isomorphic to H∗(LM). We also discuss

a spectrum level analogue of the above results and calculations, as well as their relations to

various Fukaya categories of the cotangent bundle T ∗M with its canonical symplectic structure.
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Introduction

In an open-closed topological field theory, one studies cobordisms beween compact one-dimensional
manifolds, whose boundary components are labeled by an indexing set, D. The cobordisms are
those of manifolds with boundary, that preserve the labeling sets in a specific way. The set of
labels D are referred to as “D-branes”, and in the string theory literature these are boundary values
of “open strings”. An open-closed field theory is a monoidal functor from a category built out
of such manifolds and cobordisms, that takes values in a linear category, such as vector spaces,
chain complexes, or even the category of spectra. In this paper we will discuss two flavors of such
open-closed field theories: “topological quantum field theories” (TQFT) as introduced by Moore
and Segal [28], and “topological conformal field theories”, (TCFT), as studied by Getzler [21] and
Costello [17].

The open part of such a theory F is the restriction of F to the “open subcategory”. This is
the full subcategory generated by those compact one-manifolds, all of whose path components have
nonempty boundary. As Moore and Segal originally pointed out, the data of an open field theory
can be encoded in a category (or as Costello points out, an A∞-category when F is an open-closed
TCFT), CF . The objects of CF are the set of D-branes, D. The space of morphisms between λ0

and λ1 ∈ D is given by the value of the theory F on the object Iλ0,λ1 , defined by the interval [0, 1]
where the boundary component 0 is labeled by λ0, and 1 is labeled by λ1. We denote this vector
space by F(λ0, λ1). The composition rules in this (A∞) category are defined by the values of F on
certain “open-closed” cobordisms. Details of this construction will be given below.

In this paper we will report on a project whose goal is to understand how the “String Topology”
theory of a manifold fits into this structure. This theory, as originally introduced by Chas and
Sullivan [9] starts with a closed, oriented n-dimensional manifold M . It was shown in [11] that there
is a (positive boundary) TQFT SM , which assigns to a circle the homology of the free loop space,

SM (S1) = H∗(LM ; k)

with field coefficients. This was recently extended by Godin [22] to show that string topology is
actually an open-closed homological conformal field theory. In this theory the set of D-branes D
is the set of closed, oriented, connected submanifolds of M . The theory assigns to a compact
one-manifold c with boundary levels, the homology of the mapping space,

SM (c) = H∗(Map(c, ∂;M)).
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Here Map(c, ∂;M) refers to the space of maps c→M that take the labeled boundary components to
the submanifolds determined by the labeling. In particular, we write PN0,N1 = Map(IN0,N1 , ∂;M)
for the space of paths γ : [0, 1]→ M such that γ(0) ∈ N0, and γ(1) ∈ N1. In Godin’s theory, given
any open-closed cobordism Σc1,c2 between one-manifolds c1 and c2, there are homological operations

µΣc1,c2
: H∗(BDiff(Σc1,c2); k)⊗H∗(Map(c1, ∂;M); k) −→ H∗(Map(c2, ∂;M); k).

An open-closed topological conformal field theory in the sense of Costello is a chain complex

valued theory, and it is conjectured that the string topology theory has the structure of such a
theory. The following theorem, which we report on in this paper, gives evidence for this conjecture.

Theorem 1. 1. There is an A∞ category, which by abuse of notation we also call SM , which is
enriched over chain complexes over an arbitrary field k, whose objects are DM = connected,
oriented submanifolds of M , and whose space of morphisms MorSM

(N1, N2) are chain ho-
motopy equivalent to the singular chains, C∗(PN1,N2). Furthermore the compositions in this
category reflect the open-closed string topology operations on the level of homology.

2. The Hochschild homology of this A∞-category SM is the homology of the free loop space,

HH∗(SM ) ∼= H∗(LM ; k).

Given any fixed submanifold N , the space of self-morphisms, MorSM
(N,N) ' C∗(PN,N ) is a

differential graded algebra. Again, on the level of homology, this algebra structure is the string
topology product introduced by Sullivan [35]. In this note we ask the following question, and report
on its answer in a variety of special cases. (See Theorem 9 below.) Details will appear in [7].

Question: Let M be a simply connected, closed submanifold. For which connected, oriented,
closed submanifolds N ⊂M is the Hochschild cohomology of C∗(PN,N ) isomorphic to the homology
of the free loop space,

HH∗(C∗(PN,N ), C∗(PN,N )) ∼= H∗(LM)

as algebras? The algebra structure of the left hand side is given by cup product in Hochschild
cohomology, and on the right hand side by the Chas-Sullivan product string topology product.

We observe that the two extreme cases of an affirmative answer to this question are known.
For example, when N is a point, PN,N is the based loop space, ΩM , and the statement that
HH∗(C∗(ΩM), C∗(ΩM)) ∼= H∗(LM) was known in the 1980’s by work of Burghelea, Goodwillie,
and others. The Hochschild cohomology statement then follows from Poincare duality. Similarly,
when N = M , then PN,N ' M , and the string topology algebra on C∗(PN,N ) corresponds, via
Poincare duality, to the cup product in C∗(M). The fact that the Hochschild cohomology of C∗(M)
is isomorphic to H∗(LM) follows from work of J. Jones in the 1980’s, and the fact that the ring
structure corresponds to the Chas-Sullivan product was proved in [12]. In this note we are able
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to report on a calculation of HH∗(C∗(PN,N ), C∗(PN,N )) which yields an affirmative answer to this
question in many cases. (See Theorem 9 below.) These cases include when the inclusion map
N ↪→M is null homotopic. Thus

HH∗(C∗(PN,N ), C∗(PN,N )) ∼= H∗(LSn)

for every connected, oriented, closed submanifold of a sphere Sn. Other cases when one gets an
affirmative answer to the above question include when the inclusion N ↪→M is the inclusion of the
fiber of a fibration p : M → B, or more generally, when N ↪→ M can be factored as a sequence of
embeddings, N = N0 ↪→ N1 ↪→ · · ·Ni ↪→ Ni+1 · · ·Nk = M where each Ni ⊂ Ni+1 is the inclusion
of a fiber of a fibration pi+1 : Ni+1 → Bi+1. Another case where the answer is affirmative is when
M = N × N , and N ↪→ M is the diagonal embedding. From this case we will be able to describe
results and conjectures of the Hochschild cochain construction, CH∗ : DGA→ DGA.

We point out that an amusing aspect of this question is that for any N ↪→ M for which the
answer is affirmative, then one can use this submanifold as a single D-brane and recover H∗(LM) as
a Hochschild cohomology ring (i.e “one brane is enough”), and that all such branes yield the same
answer.

This paper is organized as follows. In section one below we discuss the relevant background
of open-closed topological field theories, including a review of work of Moore and Segal [28], and
of Costello [17]. In section 2 we describe the ingredients of the proofs of Theorems 1 and discuss
the Hochschild cohomology calculations of the chain algebras, C∗(PN,N ) (Theorem 9 below). The
methods involve a type of Morita theory, and we also describe a consequence of these arguments,
yielding that certain module categories over the algebras C∗(PN,N ) are isomorphic. The extreme
examples mentioned above yield isomorphisms of certain module categories over the cochains C∗(M)
and the chains of the based loop space, C∗(ΩM), which were originally obtained in [18]. See Theorem
10 below. In section 3 we discuss possible relationships between the categories described here and
certain Fukaya categories of the cotangent bundle, T ∗M with its canonical symplectic structure.

1 Open-closed Topological Field Theories

As mentioned in the introduction, the objects of study in an open-closed field theory are param-
eterized, compact, oriented one-manifolds, c, together with a labeling of the components of the
boundary, ∂c, by elements of a set, D. An “open-closed” cobordism Σc1,c2 between two objects
c1 and c2 is an oriented surface Σ, whose boundary is partitioned into three parts: the incoming
boundary, ∂inΣ which is identified with c1, the outgoing boundary ∂outΣ which is identified with
c2, and the remaining part of the boundary, referred to as the “free part”, ∂freeΣ whose path com-
ponents are labeled by D, with the property that ∂freeΣ is itself a cobordism between ∂c1 and ∂c2,
preserving the labeling. This is the usual notion of a cobordism of manifolds with boundary, with the
additional data of the labeling set D. Figure 1 below is a picture of a one-manifold whose boundary
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components are labeled by elements of D, and figure 2 is a picture of an open-closed cobordism. In
this picture the free part of the boundary, ∂freeΣ is highlighted in red. In figure 3 a smooth surface
is shown that is homeomorphic to the open-closed cobordism given in figure 2. The free part of the
boundary is again highlighted in red.
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4

Figure 1: A one manifold with labels λi ∈ D
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Figure 2: An open-closed cobordism

In [28], Moore and Segal describe basic properties of open-closed topological quantum field the-

ories, and in a sense, Costello then gave a derived version of this theory when he gave a description
of open-closed topological conformal field theories.
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Figure 3: A smooth open-closed cobordism

1.1 The work of Moore and Segal on open-closed TQFT’s

In [28] Moore and Segal describe how an open-closed topological quantum field theory F assigns to
each one manifold c with boundary components labeled by D, a vector space over a field k, F(c).
The theory F also assigns to every diffeomorphism class of open closed cobordism Σc1,c2 a linear
map

F(Σc1,c2) : F(c1)→ F(c2).

This assignment is required to satisfy two main properties:

1. 1. Gluing: One can glue two open-closed cobordisms when the outgoing boundary of one is
identified with the incoming boundary of the other:

Σc1,c2#Σc2,c3 = Σc1,c3 .

In this case the operation F(Σc1,c2#Σc2,c3) is required to be the composition:

F(Σc1,c2#Σc2,c3) : F(c1)
F(Σc1,c2 )
−−−−−−→ F(c2)

F(Σc2,c3 )
−−−−−−→ F(c3).

This condition can be viewed as saying that F is a functor F : CD → V ectk, where CD is the
cobordism category whose objects are one manifolds with boundary labels in D, and whose
morphisms are diffeomorphism classes of open-closed cobordisms. Here the diffeomorphisms
are required to preserve the orientations, as well as the boundary structure (∂in, ∂out, and the
labeling). V ectk is the category of vectors spaces over the field k, whose morphisms are linear
transformations between them.

2. Monoidal: There are required to be natural isomorphisms,

F(c1)⊗F(c2)
∼=−→ F(c1 t c2)

that makes F into a monoidal functor. (The monoid structure in CD is given by disjoint union
of both the object manifolds and the morphism cobordisms. )
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Let F be an open-closed TQFT. The value of F on a single unit circle, F(S1) is known as the
closed state space of the theory F . It is well known that F is a commutative Frobenius algebra

over k. That is, there is an associative multiplication µF : F(S1) ⊗ F(S1) → F(S1) coming from
the value of F on the pair of pants cobordism from S1 t S1 to S1. The unit disk, viewed as having
one outgoing boundary component, ∂outD2 = S1, is a cobordism from the emptyset ∅ to S1, and
therefore induces a map ι : k → F(S1), which is the unit in the algebra structure. Thinking of the
disk as having one incoming boundary component, ∂inD2 = S1, induces a map θF : F(S1) → k

which is the “trace map” in the theory. That is, the bilinear form

〈 , 〉 : F(S1)×F(S1)
µF−−→ F(S1) θF−−→ k

is nondegenerate.

Figure 4: The pair of pants cobordism inducing the multiplication µF : F(S1)⊗F(S1)→ F(S1).

There is more algebraic structure associated to an open closed field theory F . As described by
Moore and Segal, there is a category, CF associated to the open part of the field theory.

Definition 2. The category CF associated to an open-closed TQFT F has as its objects the set of
D-branes, D. The space of morphisms between objects λ1 and λ2 is given by the value of the field
theory F on the one-manifold Iλ1,λ2 which is given by the interval [0, 1] with boundary components
labeled by λ1 and λ2. We write this space as F(λ1, λ2).

The composition law in the category CF is defined by the open-closed cobordism shown in figure
6.

Notice that the endomorphism algebras in this category, F(λ, λ), are also Frobenius algebras.
For simplicity we write these algebras as F(λ). The trace maps are induced by the open-closed
cobordism between Iλ,λ and the empty set given by the disk as in figure 7.

We observe that the closed state space F(S1) is necessarily commutative as an algebra, because
the cobordisms shown in figure 8 admit an orientation preserving diffeomorphism between them
that fixes the boundary pointwise. However for a D-brane λ ∈ D, the fact that the open-closed
cobordisms shown in figure 9 are not diffeomorphic via an orientation preserving diffeomorphism
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Figure 5: The one manifold Iλ1,λ2 which induces the morphism space F(λ1, λ2).

λ 1

2

3

λ

λ

Figure 6: The value of F on this cobordism defines the composition pairing, F(λ1, λ2)⊗F(λ2, λ3)→
F(λ1, λ3)

that fixes the incoming and outgoing boundaries, imply that the Frobenius algebra F(λ, λ) may not
be commutative.

These algebras are, of course, related to each other. For example, the “whistle” open-closed
cobordism given in figure 10 defines a ring homomorphism θλ : F(λ) → F(S1), which, is easy to
see takes values in the center Z(F(λ)) (see [28] for details.) So in particular one has the following
result.

Proposition 3. Any open-closed TQFT F comes equipped with map of algebras

θλ : F(S1)→ Z(F(λ))

where Z(F(λ)) is the center of the endomorphism algebra F(λ), for any λ ∈ D.
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λ

Figure 7: The value of F on this open-closed cobordism defines the trace map F(λ)→ k

Figure 8: These diffeomorphic cobordisms imply that the Frobenius algebra F(S1) is commutative.

Turning the whistle cobordism around, so that its incoming boundary is Iλ,λ, and its outgoing
boundary is S1, defines a homomorphism θ∗λ : F(S1)→ F(λ), which is not difficult to see is adjoint to
θλ, with respect to the inner products defined by the corresponding Frobenius algebras. Moreover,
studying the relevant glued cobordisms, one can show that the composition, θλ ◦ θ∗λ satisfies the
“Cardy formula”,

θλ ◦ θ∗λ(φ) =
n∑
i=1

ψiφψi (1)

where {ψ1, · · · , ψn} is any basis of F(λ), and {ψ1, · · · , ψn} is the dual basis (with respect to the
inner product in the Frobenius algebra structure). Again, see [28] for the details of this claim.

1.2 The work of Costello on open-closed TCFT’s

In [17] Costello studied open-closed topological conformal field theories (TCFT). Such a theory can
be viewed as a derived version of a topological quantum field theory, and in a sense, Costello’s work
can, in part be viewed as a derived extension and generalization of the work of Moore and Segal.

More precisely, the TCFT’s Costello studied are functors,

F : OCD → Compk
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Figure 9: These surfaces are not diffeomorphic as open-closed cobordisms, and thus the Frobenius
algebras F(λ) may not be commutative.

λ

Figure 10: The “whistle open-closed cobordism” inducing the map θλ : F(S1)→ Z(F(λ)).

where OCD is an open-closed cobordism category, enriched over chain complexes, and Compk is
the symmetric monoidal category of chain-complexes over a ground field k. In Costello’s work,
Char(k) = 0. By an “open-closed cobordism category, enriched over chain complexes”, Costello
means the following. Let D be an indexing set of “D-branes” as above. Then the objects of OCD
are parameterized, compact, oriented one-manifolds, c, together with a labeling of the components
of the boundary, ∂c, by elements of D, as described in the previous section.

To describe the chain complex of morphisms between objects c1 and c2, one considers the moduli
space of all Riemann surfaces that form open-closed cobordisms between c1 and c2. This moduli
space was originally described by Segal [33] when the ci’s have no boundary. For the general
situation we refer the reader to Costello’s paper [17]. These open-closed cobordisms are required to
satisfy the additional “positive boundary” requirement, that every path component of an element
Σ ∈MD(c1, c2) has a nonempty incoming boundary. It is standard to see that

MD(c1, c2) '
∐

BDiff+(Σ, ∂Σ)

where the disjoint union is taken over all diffeomorphism classes of open-closed cobordisms from c1

to c2. These diffeomorphisms are diffeomorphisms of open-closed cobordisms, as defined in the pre-
vious section. They are orientation preserving, they preserve the incoming and outgoing boundaries
pointwise, and they preserve the labelings in D. The morphisms in OCD are then the singular chains
with coefficients in k, MorOCD (c1, c2) = C∗(MD(c1, c2); k).
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A topological conformal field theory is then a functor F : OCD → Compk which is “h-monoidal”,
in the sense that there are natural transformations F(c1) ⊗ F(c2) → F(c1 t c2) which are quasi-
isomorphisms of chain complexes. Costello calls OCD − mod the functor category of topological
conformal field theories.

Let OD ↪→ OCD be the full subcategory whose objects have no closed components. That is, every
connected component of a one-manifold c ∈ Ob(OD) has (labeled) boundary. Write OD −mod to
be the functor category of h-monoidal functors φ : OD → Compk. We refer to such a functor as an
“open-field theory”.

Costello observed that an open topological conformal field theory φ : OD → Compk defines an
A∞-category, enriched over chain complexes, in much the same was as an open topological quantum
field theory defines a category (see Definition (2) above). This is most easily seen if the field theory
is strictly monoidal, that is, the transformations φ(c1)⊗φ(c2)→ φ(c1tc2) are isomorphisms of chain
complexes, rather than only quasi-isomorphisms. In this case the associated A∞-category, which we
call Cφ, has objects given by the set of D-branes D. The space of morphisms φ(λ0, λ1) is the chain
complex given by the value of the functor φ on the object Iλ0,λ1 . We call this space φ(λ0, λ1). The
higher compositions

φ(λ1, λ2)⊗ φ(λ2, λ2)⊗ · · · ⊗ φ(λn−1, λn) −→ φ(λ1, λn)

are given by the the value of the functor φ on the open-closed cobordism between
∐n−1
i=1 Iλi,λi+1 and

Iλ1,λn
given by the connected, genus zero surface Dλ1,···λn

pictured in figure 11 in the case n = 4.

λ

λ

λ

λ

1

2

3

4

Figure 11: The open-closed cobordism Dλ1,···λ4

The A∞-category defined by an open TCFT has additional properties that Costello referred to
as a “Calabi-Yau” A∞ category. The following theorem of Costello describes the central nature of
this category in open-closed field theory.
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Theorem 4. (Costello [17]) a. The restriction functor ρ : OCD−mod→ OD−mod from open-closed
TCFT’s to open TCFT’s has a derived left adjoint, Lρ : OD −mod→ OCD −mod.

b. If φ ∈ OD −mod is an open TCFT, then the closed state space of the open-closed field theory
Lρ(φ) (i.e the value of the functor on the object given by the circle, Lρ(φ)(S1)) is a chain complex
whose homology is given by the Hochschild homology of the A∞ -category, φ. That is,

H∗(Lρ(φ)(S1)) ∼= HH∗(Cφ).

Here the Hochschild homology of a category enriched over chain complexes is computed via
the Hochschild complex, whose n-simplices are direct sums of terms of the form Mor(λ0, λ1) ⊗
Mor(λ1, λ2) ⊗ · · · ⊗ Mor(λn−1, λn) ⊗ Mor(λn, λ0). This is a double complex whose boundary
homomorphisms are the sum of the internal boundary maps in the chain complex of n-simplices,
plus the Hochschild boundary homomorphism, which is defined as the alternating sum

∑n
i=0(−1)i∂i,

where for i = 0, · · · , n − 1, ∂i is induced by the composition Mor(λi, λi+1) ⊗Mor(λi+1, λi+2) →
Mor(λi, λi+2). ∂n is induced by the composition Mor(λn, λ0) ⊗Mor(λ0, λ1) → Mor(λn, λ1). The
Hochschild homology of an A∞-category enriched over chain complexes is defined similarly. See [17]
for details.

Costello’s theorem can be interpreted as saying that there is a “universal” open-closed theory
with a given value on the open cobordism category (i.e the value of the derived left adjoint Lρ), and
that its closed state space has homology equal to the Hochschild homology of the associated A∞-
category. We note that in the interesting case when there is only one D-brane, that is, D = {λ}, then
the A∞-category is an A∞-algebra, and so the closed state space of the associated universal open-
closed theory would have homology given by the Hochschild homology of this algebra. In particular
this says that for any open-closed field theory φ with one D-brane, which has the corresponding A∞-
algebra A, then there is a well defined map from the Hochschild homology HH∗(A) → H∗(φ(S1)).
This can be viewed as a derived version of the Moore-Segal result (Proposition 3) that gives a map
φ(S1)→ Z(A). In the Moore-Segal setting, φ(S1) is an ungraded Frobenius algebra , (or equivalently
it has trivial grading) so we may identify it with H0(φ(S1)). Furthermore the center Z(A) may be
identified with the zero dimensional Hochschild cohomology HH0(A), so that the Moore-Segal result
gives a map H0(φ(S1))→ HH0(A). By the self-duality of the Frobenius algebra structures of φ(S1)
and of A, this gives a dual map HH0(A)→ H0(φ(S1)). Costello’s map can be viewed as a derived
version of this map.

2 The string topology category and its Hochschild homology

Among the goals of the project reported on here, is to see how string topology fits into Costello’s
picture. The most basic operation in string topology is the loop product defined by Chas and
Sullivan [9]:

µ : Hp(LM)⊗Hq(LM)→ Hp+q−n(M)
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where M is a closed, oriented, n-dimensional manifold. Now let B : Hq(LM)→ Hq+1(LM) be the
operation induced by the rotation S1-action on LM , r : S1 × LM → LM .

B : Hq(LM)→ Hq+1(S1 × LM) r∗−→ Hq+1(LM)

α→ r∗([S1]× α)

The following was one of the main theorems of [9]

Theorem 5. [9] Let H∗(LM) = H∗+n(LM) be the (regraded) homology of the free loop space.
Then with respect to the loop product µ and the degree one operator B, H∗(LM) has the structure
of a (graded) Batalin-Vilkovisky algebra. That is, it is a graded commutative algebra satisfying the
following identities:

1. B2 = 0, and

2. For α ∈ Hp(LM), and β ∈ Hq(LM) the bracket operation

{α, β} = (−1)|α|B(α · β)− (−1)|α|B(α) · β − α ·B(β)

is a derivation in each variable.

Moreover, a formal argument given in [9] implies that the operation { , } satisfies the (graded)
Jacobi identity, and hence gives H∗(LM) the structure of a graded Lie algebra.

The product is defined by considering the mapping space, Map(P,M) where P is the pair of
pants cobordism (figure (4)) between two circles and one circle. By restricting maps to the incoming
and outgoing boundaries, one has a correspondence diagram

LM
ρout←−−−Map(P,M)

ρin−−→ LM × LM. (2)

By retracting the surface P to the homotopy equivalent figure 8 graph, one sees that one has a
homotopy cartesian square,

Map(P,M)
ρin−−−−→ LM × LMy y

M −−−−→
∆

M ×M

where ∆ : M ↪→M×M is the diagonal embedding. This then allows the construction of an “umkehr
map” ρ!

in : H∗(LM × LM) → H∗−n(Map(P,M)). This map was defined on the chain level in [9],
and via a Pontrjain-Thom map LM × LM → Map(P,M)TM in [12]. Here Map(P,M)TM is the
Thom space of the tangent bundle TM pulled back over the mapping space via evaluation at a
basepoint, Map(P,M) → M . By twisting with the virtual bundle −TM , Cohen and Jones proved
the following.

Theorem 6. [12] For any closed manifold M , the Thom spectrum LM−TM is a ring spectrum.
When given an orientation of M , the ring structure of LM−TM induces, via the Thom isomorphism,
the Chas-Sullivan algebra structure on H∗(LM).
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The Chas-Sullivan product was generalized to a TQFT by Cohen and Godin in [11]. Given a
cobordism Σ between p-circles and q-circles, they considered the following correspondence diagram
analogous to (2).

(LM)q
ρout←−−−Map(Σ,M)

ρin−−→ (LM)p. (3)

Using fat (ribbon) graphs to model surfaces, Cohen and Godin described an umkehr map

ρ!
in : H∗((LM)p)→ H∗+χ(Σ)·n(Map(Σ,M))

which allowed the definition of an operation

µΣ = (ρout)∗ ◦ ρ!
in : H∗((LM)p)→ H∗+χ(Σ)·n((LM)q)

which yielded the (closed) TQFT structure. In these formulae, χ(Σ) is the Euler characteristic of
the cobordism Σ.

Open-closed operations were first defined by Sullivan in [35]. Somewhat later, Ramirez [31]
and Harrelson [23] showed that these operations define a positive boundary, open-closed topological
quantum field theory, in the Moore-Segal sense, except that the value of the theory lie in the category
of graded vector spaces over a field k. In this theory, which we call SM , the closed state space is
given by

SM (S1) = H∗(LM ; k). (4)

The set of D-branes DM is defined to be the set of connected, closed submanifolds N ⊂ M . The
value of this theory on the interval labeled by submanifolds N1 and N2 (see figure (5) is given by

SM (N1, N2) = SM (IN1,N2) = H∗(PN1,N2), (5)

where PN1,N2 is the space of paths α : [0, 1]→M with boundary conditions, α(0),∈ N1, α(1) ∈ N2.

Finally, using families of ribbon graphs modeling both closed and open-closed cobordisms, in [22]
Godin recently proved the following result.

Theorem 7. (Godin) [22] Let OCH∗DM
be the category with the same objects as OCDM

, and whose
morphisms are the homology of the morphisms in OCDM

. That is, given objects c1 and c2, the
morphisms from c1 to c2 are given by

MorOCH∗
DM

(c1, c2) = H∗(MD(c1, c2); k) ∼=
⊕

H∗(BDiff+(Σ, ∂Σ); k)

where the disjoint union is taken over all diffeomorphism classes of open-closed cobordisms from c1

to c2. Then the above string topology operations can be extended to a symmetric monoidal functor

SM : OCH∗DM
→ Gr V ect

where Gr V ect is the category of graded vector spaces over k, whose monoidal structure is given by
(graded) tensor product. In other words, the string topology of M is a positive boundary, open-closed
“homological conformal field theory” (HCFT).
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Notice that being a homological conformal field theory is a weaker property than being a topo-
logical conformal field theory, and so Costello’s results cannot be immediately applied to the string
topology of a manifold M . In order for the functor SM to actually induce a TCFT, the string topol-
ogy operations must be defined on the chain level, and satisfy the appropriate compatibility and
coherence properties. It is conjectured that in fact this can be done. In any case, Costello’s theorem
(Theorem 4 above) suggests that there is an A∞-category associated to the string topology of M , and
that its Hochschild homology should be the value of the closed state space, SM (S1) = H∗(LM ; k).
Theorem 1 as stated in the introduction, states that such a category exists. . Its proof will appear
in [7].

Another interesting question deals with when there is only one D-brane D = {N}, where N
is a fixed, connected submanifold of M . Then the corresponding A∞-category would be an A∞-
algebra. It turns out that for Poincare duality reasons the correct Hochschild theory to use in
this situation is Hochschild cohomology. The question described in the introduction, regarding the
relationship between these Hochschild cohomology algebras and the Chas-Sullivan algebra structure
on H∗(LM), was based on the idea that string topology, even in this “one D-brane” setting should
fit into Costello’s picture of a universal open-closed TCFT. In particular the calculations reported
on below state that for a large class of submanifolds N ⊂ M , the subcategory with whose only
D-brane is N still yields the full closed state space of string topology,

HH∗(C∗(PN,N ), C∗(PN,N )) ∼= H∗(LM) = SM (S1).

The proofs of these statements involve the following ideas. By an Eilenberg−Moore argument,
there is a chain homotopy equivalence C∗(PN1,N2) ' C∗(FN1) ⊗LC∗(ΩM) C∗(FN1) where FNi

is an
appropriate homotopy fiber of the inclusion Ni ↪→ M which comes equipped with an action of a
topological group of the homotopy type of ΩM (e.g the Kan simplicial loop group). The homotopy
orbit space of this action is equivalent to N . This tensor product is an appropriate derived tensor
product (in the category of chain complexes).

Next one uses an appropriate notion of Poincare duality with twisted coefficients. Here, instead
of the classical setting where one has coefficients given by modules over the group ring Z[π1(M)], one
needs a derived version of Poincare duality, that applies for modules over C∗(ΩM). The appropriate
duality was worked out by Malm in [27], using the work of Dwyer-Greenlees-Iyengar [18] and Klein
[24]. Using this, one obtains the following isomorphism. This is related to results of Klein in in [25].

C∗(PN1,N2) ' C∗(FN1)⊗LC∗(ΩM) C∗(FN1) ' RhomC∗(ΩM)(C∗(FN1), C∗(FN2))

Here Rhom denotes a derived homomorphism group. This chain equivalence allows for the definition
of the category SM . The objects are closed, connected, oriented submanifolds, N ⊂M , and the mor-
phism space from N1 to N2 is the derived homomorphism space, RhomC∗(ΩM)(C∗(FN1), C∗(FN2)).
The Hochschild (co)homology statements in the above theorems are approached using “Morita du-
ality arguments”. This is, in a sense that can be made precise, dual to the more common Morita
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equivalence arguments. For example to prove Theorem , the following basic principle is proven in
[7]:

Theorem 8. Let R and S be two differential graded algebras over a field k, and suppose there exist
R− S (differential graded) modules satisfying the following equivalences:

RhomR(P,Q) ' S and RhomS(P,Q) ' R. (6)

Then their Hochschild cohomologies are isomorphic,

HH∗(R,R) ∼= HH∗(S, S).

Using this result, given a submanifold N ⊂M , one considers

R ' C∗(ΩM), S ' C∗(PN,N ) ' RhomC∗(ΩM)(C∗(FN ), C∗(FN )).

The R−S modules are both given by P = Q ' C∗(FN ). We already know that RhomR(P,Q) ' S,
for any N ⊂ M , when M is simply connected. The following result was achieved in consultation
with W.Dwyer:

Theorem 9. Assume M is simply connected. Then for any N ⊂M in D,

RhomC∗(PN,N )(C∗(FN ), C∗(FN )) ' Ĉ∗(ΩM)

Here Ĉ∗(ΩM) is the completion of C∗(ΩM) with respect to the homology theory hN∗ , defined on the
derived category of C∗(ΩM)-modules given by

hN∗ (P ) = TorC∗(ΩN)(k, P ).

So a natural question is: For what submanifolds N ⊂M is C∗(ΩM) hN∗ -complete? This is rele-
vant, because in the presence of this completeness, one would know thatHH∗(C∗(PN,N , C∗(PN,N )) ∼=
HH∗(C∗(ΩM), C∗(ΩM)) ∼= H∗(LM).

We remark that as of this date, we know that C∗(ΩM) is hN∗ -complete in the following cases:

1. The inclusion map N ↪→ M is null homotopic. This implies that FN ' ΩM × N , and
PN,N ' ΩM ×N ×N .

2. The inclusion N ↪→ M is the inclusion of the fiber of a fibration p : M → B. More generally
there is a sequence of inclusions, N ⊂ N1 ⊂ N2 ⊂ · · · ⊂ Nk = M where each Ni ⊂ Ni+1 is the
inclusion of the fiber of a fibration pi+1 : Ni+1 → Bi+1.

3. If M = N ×N , and N is embedded as the diagonal inclusion ∆ : N ⊂ N ×N .

As is usual in Morita theory, these arguments actually prove that certain categories of modules
are isomorphic. Namely, the following result will also appear in [7]. For N ⊂ M as above, let EM
be the endomorphism algebra EN = RhomC∗(ΩM)(C∗(FN ), C∗(FN )), which as noted above is chain
equivalent to C∗(PN,N ).
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Theorem 10. For any N ⊂ M for which C∗(ΩM) is hN∗ -complete, then the thick subcategory of
differential graded modules over C∗(ΩM) generated by C∗(FN ), is equivalent to the thick subcategory
of EN -modules generated by EN .

Notice that in the case when N = M , C∗(FN ) ' k, and EN ' C∗(M), which by Poincare
duality is chain equivalent to C∗(M) ' C∗(PM,M ). In this case the theorem says that the thick
subcategory of C∗(ΩM)-modules generated by k is equivalent to the thick subcategory of C∗(M)-
modules generated by C∗(M). The result in this case was proved by Dwyer, Greenlees, and Iyengar
in [18].

As an application of the above calculations, one can obtain a result about iterating the the
Hochschild cochain construction. Namely, notice that if A is a differential graded algebra, then the
Hochschild cochains CH∗(A,A) also inherits the structure of a differential graded algebra, under
the cup product operation. For ease of notation, we write CH∗(A) to denote CH∗(A,A). We can
then iterate the construction, and denote by CH∗n(A) to denote the n-fold iterate,

CH∗n(A) = CH∗ (CH∗(CH∗(· · · (CH∗(A)) · · · ))) .

Now observe that if we consider the diagonal embedding, ∆ : M ↪→M ×M , then the space of paths
PM,M (M ×M) is homotopy equivalent to the free loop space, LM . Furthermore, the homotopy
fiber, FM ' ΩM . Thus the chain complex

C∗(LM) ' C∗(PM,M (M ×M)) ' RhomC∗(ΩM×ΩM)(C∗(ΩM);C∗(ΩM))

gives a chain level algebra structure, which the authors show to induce the Chas-Sullivan structure
on H∗(LM) in homology. The following can be viewed as a generalization of results of [12], relating
the Chas-Sullivan algebra to Hochschild cohomology:

Corollary 11. Let M be simply connected. Then there is a quasi-isomorphism of differential graded
algebras,

CH∗n(C∗M) ' (C∗(LM))⊗2n−1
.

In homology, the algebra structure on the right hand side is the Chas-Sullivan string topology product
on H∗(L(M×2n−1

)).

Sketch of proof. One knows that CH∗(M) ' C∗(LM) ' C∗(PM,M (M ×M)). Conjecture is
known in the case of the embedding, ∆ : M →M ×M , so we have that

CH∗2 (C∗(M)) ' CH∗(C∗(PM,M (M ×M))) ' C∗(L(M ×M)) ' C∗(LM)⊗2.

But the last chain algebra is equivalent to C∗(PM×M,M×M (M4)), where M ×M is embedded in M4

by the diagonal, ∆ : M ×M →M4. The result follows from iterating this procedure.

Finally we remark that there are spectrum level analogues of the above theorems, and in partic-
ular Theorems 1 and as stated in the introduction.

17



Theorem 12. There is a string topology category, enriched over spectra, which by abuse of notation
we still refer to as SM , whose objects again are elements of D. The morphisms between N1 and N2

have the homotopy type of P−TN1
N1,N2

, the Thom spectrum of the virtual bundle −TN1, where TN1 is the
tangent bundle of N1, pulled back over PN1,N2 via the evaluation map that takes a path α ∈ PN1,N2

to its initial point α(0) ∈ N1. Then the Topological Hochschild Homology of this category is the
suspension spectrum of the free loop space (with a disjoint basepoint),

THH•(SM ) ' Σ∞(LM+). (7)

Moreover, the analogue of Theorem is the following:

Theorem 13. Assume that M is a simply connected, closed manifold. Then given any closed,
oriented submanifold N ⊂M , then the Thom spectrum P−TNN,N is a ring spectrum, and its Topological
Hochschild Cohomology is given by

THH•(P−TNN,N ) ' LM−TM (8)

and the equivalence is one of ring spectra.

3 Relations with the Fukaya category of the cotangent bun-

dle

This section is speculative, regarding the possible relationships between the string topology category
SM , and the Fukaya category of the cotangent bundle. T ∗M . The Fukaya category is an A∞-
category associated to a symplectic manifold (N2n, ω). Here ω ∈ Ω2(N) is a symplectic 2-form.
Recall that for any smooth n-manifold Mn, T ∗M has the structure of an exact symplectic manifold.
That is, it has a symplectic 2-form ω which is exact. In the case T ∗M , ω = dθ, where θ is the
Liouville one-form defined as follows. Let p : T ∗M → M be the projection map. Let x ∈ M , and
t ∈ T ∗xM . Then θ(x, t) is the given by the composition,

θ(x, t) : Tx,t(T ∗M)
dp−→ TxM

t−→ R.

There has been a considerable amount of work comparing the symplectic topology of T ∗M with the
string topology of M . This relationship begins with a theorem of Viterbo [36], that the symplectic
Floer homology is isomorphic to the homology of the free loop space,

SH∗(T ∗M) ∼= H∗(LM).

The symplectic Floer homology is computed via a Morse-type complex associated to the (possibly
perturbed) “symplectic action functional”, A : L(T ∗M) → R. The pertubation is via a choice of
Hamiltonian, and so long as the Hamiltonian grows at least quadratically near infinity, the symplectic
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Floer homology is described by the above isomorphism. The precise relationship between the Floer
theory of the symplectic action functional A and Morse theory on LM was studied in great detail
by Abbondandolo and Schwarz in [1]. In particular they were able to show that a “pair of pants” (or
“quantum”) product construction in SH∗(T ∗M) corresponds under this isomorphism to a Morse-
theoretic analogue of the Chas-Sullivan product in H∗(LM). In [14] this product was shown to agree
with the Chas-Sullivan construction.

The objects of the Fukaya category Fuk(T ∗M) are exact, Lagrangian submanifolds L ⊂ T ∗M .
The morphisms are the “Lagrangian intersection Floer cochains”, CF ∗(L0, L1). These Floer cochain
groups are also a Morse type cochain complex associated to a functional on the path space,

AL0,L1 : PL0,L1(T ∗M)→ R.

If L0 and L1 intersect transversally, then the critical points are the intersection points (viewed as
constant paths), and the coboundary homomorphisms are computed by counting holomorphic disks
with prescribed boundary conditions. Of course if AL0,L1 were actually a Morse function, satisfying
the Palais-Smale convergence conditions, then these complexes would compute H∗(PL0,L1(T ∗M)).
One knows that this Morse condition is not satisfied, but there are examples, when this homological
consequence is nonetheless satisfied. Namely, let N ⊂M be an oriented, closed submanifold. Let νN
be the conormal bundle. That is, for x ∈ N , νN (x) ⊂ T ∗xM consists of those cotangent vectors which
vanish on the subspace TxN ⊂ TxM . Notice that the conormal bundle is always an n-dimensional
submanifold of the 2n-dimensional manifold T ∗M . It is a standard fact that the conormal bundle
νxN is a (noncompact) Lagrangian submanifold of T ∗M . Notice that for any two closed, oriented
submanifolds N0, N1 ⊂M the following path spaces in the cotangent bundle and in the base manifold
M are homotopy equivalent:

PνN0 ,νN1
(T ∗M)) ' PN0,N1(M).

The following was recently proven by Abbondandalo, Portaluri, and Schwarz [3]:

Theorem 14. Given any closed, oriented submanifolds N0, N1 ⊂ M , then the intersection Floer
cohomology of the HF ∗(νN0 , νN1) is isomorphic to the homology of the path space,

HF ∗(νN0 , νN1) ∼= H∗(PN0,N1(M)).

If one could realize these isomorphisms on the level of chain complexes, in such a way that the
compositions correspond, then one would have a proof of the following conjecture:

Conjecture 15. Let Fukconor(T ∗M) be the full subcategory of the Fukaya category generated by
conormal bundles of closed, connected, submanifolds of M . Then there is a Quillen equivalence of
categories with the string topology category,

Fukconor(T ∗M) ' SM .

Remarks.
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1. In this conjecture one probably wants to study the “wrapped” Fukaya category as defined by
Fukaya, Seidel, and Smith in [20].

2. When N = point, its conormal bundle is a cotangent fiber, TxM . Abouzaid [4] has recently
described the A∞ relationship between the Floer cochains CF ∗(TxM,TxM) and the chains of
the based loop space, C∗(ΩM).

There are other potential relationships between the Fukaya category and the string topology
category as well. For example, Fukaya, Seidel, and Smith [20] as well as Nadler [29] building on
work of Nadler and Zaslow [30] showed that when M is simply connected, the Fukaya category
Fukcpt(T ∗M) generated by compact, exact Lagrangians, has a fully faithful embedding into the
derived category of modules over the Floer cochains, CF ∗(M,M) where M is viewed as a Lagrangian
submanifold of T ∗M as the zero section. Furthermore, one knows that the Floer cohomology,
HF ∗(M,M) is isomorphic to H∗(M), and recently Abouzaid [5] proved that CF ∗(M,M) ' C∗(M)
as A∞- differential graded algebras. So Fukcpt(T ∗M) can be viewed as a sub-A∞-category of the
derived category of C∗(M)-modules.

When M is simply connected, the string topology category SM can also be viewed as a subcat-
egory of the category of C∗(M)- modules. This is shown by using a generalized Poincare duality
argument to prove the following:

Lemma 16. Let M be a closed, simply connected manifold, and N0, N1 ⊂ M connected, oriented,
closed submanifolds. Then there is a chain equivalence,

C∗(PN0,N1) ' RhomC∗(M)(C∗(N1), C∗(N0)).

Equivalently, there is a chain equivalence

RhomC∗(ΩM)(C∗(FN0), C∗(FN1)) ' RhomC∗(M)(C∗(N1), C∗(N0)).

The following is a strengthening of this lemma.

Theorem 17. For M a closed, simply connected manifold, the string topology category SM is Quillen
equivalent to the full A∞ - subcategory of the derived category of C∗(M)- submodules, generated by
modules given by cochains C∗(N) for N ⊂M a connected, oriented submanifold.

From Nadler’s work we see that the relationship between the compact Fukaya category Fukcpt(T ∗M)
should be equivalent to the “one-brane” string topology category, SMM , which is the full subcategory
of of SM where the only D-brane is the entire manifold itself. This category, in turn, is equivalent
to the derived category of perfect C∗M - modules.

The significance of this potential relationship is amplified when one considers recent work of
Hopkins and Lurie [26] classifying “extended” topological conformal field theories. This can be
viewed as a direct generalization of the work of Moore-Segal, and of Costello discussed above. In
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their classification scheme, such a field theory is determined by an appropriately defined “dualizable
object”. In the category of chain complexes, C∗(M) is such an object. Thus the category of of
perfect C∗(M) - modules should determine an extended field theory, which should correspond to
string topology. On the other hand, by the above remarks, the Fukaya category Fukcat(T ∗M) should
also determine a field theory, presumably the “Symplectic Field Theory” of Eliashberg, Givental,
and Hofer [19]. One can therefore speculate that this line of reasoning may produce an equivalence of
the symplectic field theory of T ∗M , and of the string topology of M . There is evidence that such an
equivalence may exist, for example the work of Cielebak and Latchev [8]. Pursuing this relationship
using the Hopkins-Lurie classification scheme could lead to a very satisfying understanding of the
deep connections between these two important theories.
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