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Abstract. Outlined here is a description of equivariance in the world of 2-dimensional
extended topological quantum field theories, under a topological action of compact Lie
groups. In physics language, I am gauging the theories — coupling them to a principal
bundle on the surface world-sheet. I describe the data needed to gauge the theory, as well
as the computation of the gauged theory, the result of integrating over all bundles. The
relevant theories are ‘A-models’, such as arise from the Gromov-Witten theory of a sym-
plectic manifold with Hamiltonian group action, and the mathematical description starts
with a group action on the generating category (the Fukaya category, in this example)
which is factored through the topology of the group. Their mirror description involves
holomorphic symplectic manifolds and Lagrangians related to the Langlands dual group.
An application recovers the complex mirrors of flag varieties proposed by Rietsch.
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1. Introduction

This paper tells the story of equivariance, under a compact Lie group, in the higher
algebra surrounding topological quantum field theory (TQFT). Speaking in riddles,
if 2-dimensional TQFT is a higher analogue of cohomology (the reader may think of
the Fukaya-Floer theory of a symplectic manifold as refining ordinary cohomology),
my story of gauged TQFTs is the analogue of equivariant cohomology. The case of
finite groups, well-studied in the literature [Tu], provides a useful and easy reference
point, but the surprising features of the continuous case, such as the appearance
of holomorphic symplectic spaces and Langlands duality, are missing there.

From another angle, this is a story of the categorified representation theory of
a compact Lie group G, with the provision that representations are topological :
the G-action (on a linear category) factors through the topology of G. One floor
below, where the group acts on vector spaces, these would be not the ordinary
complex representations of G, but the local systems of vector spaces on the clas-
sifying space BG. There is no distinction for a finite group, but in the connected
case, BG is simply connected, and we must pass to the derived category to see
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anything interesting. The same will hold in the categorified story, where simply
connected groups will appear to have trivial representation theory, before deriving.
This observation suggests a straightforward homological algebra approach to the
investigation, worthy of featuring as an example in a graduate textbook. Pursuing
that road, however, leads to faulty predictions, even in the simplest case of pure
gauge theory of a point (topological Yang-Mills theory). One reason for this fail-
ure is a curious predilection of interesting TQFTs to break the obvious Z-grading
information present, collapsing it to a Z/2 grading, or encoding it in more labored
form (as in the Euler field of Gromov-Witten theory [M]). The result is that ho-
mological algebra, which localizes the spectrum of a graded ring to its degree zero
part, loses relevant information, which needs restoration by ulterior guesswork.
In our example, we will see the homological information in the neighborhood of
a Lagrangian within a certain holomorphic symplectic manifold, whereas most of
the interesting ‘physics’ happens elsewhere.

The emerging geometric picture for this categorical topological representation
theory is surprisingly attractive. Representations admit a character theory, but
characters are now coherent sheaves on a manifold related to the conjugacy classes,
instead of functions. The manifold in question, the BFM space of the Langlands
dual Lie group G∨, introduced in [BFM], is closely related to the cotangent bun-
dle to the space of conjugacy classes in the complex group G∨C . (For SU2, it is
the Atiyah-Hitchin manifold studied in detail in [AH].) Multiplicity spaces of G-
invariant maps between linear representations are now replaced by multiplicity cat-
egories, whose ‘dimensions’ are the Hom-spaces in the category of coherent sheaves.
(In interesting examples, they are the Frobenius algebras underlying 2-dimensional
TQFTs.) There is a preferred family of simple representations, which in a sense
exhausts the space of representations: they foliate the BFM space. Every such
representation is ‘symplectically induced’ from a one-dimensional representation
of a certain Levi subgroup of G: more precisely, it is the Fukaya category of a flag
variety of G. This is formally similar to the Borel-Weil construction of irreducible
representations of G by holomorphic induction. Recall that in that world there is
another kind of “L2-induction” from closed subgroups, which is right adjoint to
the restriction functor. The counterpart of näıve induction also exists in our world,
and gives the (curved) string topologies [CS] of the same flag varieties, instead of
their Fukaya categories.

This story might seem a bit unhinged, were it not for the appearance of the
governing structure in the work of Kapustin, Rozansky and Saulina [KRS]. Studied
there are boundary conditions in the 3-dimensional TQFT associated to a holo-
morphic symplectic manifold X, known as Rozansky-Witten theory [RW]. Among
those are holomorphic Lagrangian sub-manifolds ofX, or more generally, sheaves of
categories over such sub-manifolds. (The full 2-category of all boundary conditions
does not yet have a precise definition.) The relation to gauge theory is summa-
rized by the observation that gaugeable 2-dimensional field theories are topological
boundary conditions for pure 3-dimensional topological gauge theory. The reader
may illustrate this with an easy example: the representations of a finite group F are
the boundary conditions for pure F -gauge theory in 2 dimensions; yet these repre-
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sentations are exactly the 1-dimensional topological field theories (vector spaces)
which admit F -symmetry. Modulo the [KRS] description of Rozansky-Witten the-
ory, my entire story is underpinned by the following

Meta-Statement. Pure topological gauge theory in 3 dimensions for a compact
Lie group G is equivalent to the Rozansky-Witten theory for the BFM space of the
Langlands dual Lie group G∨.

I shall offer no elucidation of this, beyond its inspirational value; however, strong
indications of this statement have been known in the physics literature, at least
for special G [SW, AF, MW]. Formulating this statement in a mathematically
useable way will require an excursion through much preliminary material in §2-5.
A small reward will come in §6, where we illustrate how these ideas can lead to
‘real answers’.

A closing warning is that the results in this paper are partly experimental:
enough examples have been checked to rule out plausible alternatives, but I do not
claim to know proofs in full generality. In fact, the status of Floer-Fukaya theory
makes such claims difficult to sustain, and the author has no special expertise on
that topic. In topological cases, such as for string topology (Fukaya theory of
cotangent bundles), precise statements and proofs are possible (and easy). More
generally, the results apply to the abstract setting of differential graded (or A∞-
categories) with topological G-action, the question being to what extent the Fukaya
category of a symplectic manifold with Hamiltonian G-action qualifies. (For non-
compact manifolds, this depends on the ‘wrapping’ condition at ∞.) If nothing
else, the paper can be read as a template for what a nice world should look like.

1.1. Acknowledgements. I thank M. Abouzaid, D. Ben-Zvi, K. Fukaya,
K. Hori, A. Kapustin, A. Neitzke, C. Woodward for helpful comments and con-
versation, and am especially indebted to E. Witten for explaining the relation to
4-dimensional gauge theory and the Nahm equations. Many thanks are due to the
Geometry group at UT Austin for the invitation to lecture there, where a primitive
version of this material was first outlined [T1]; for later developments, see [T2].

2. Topological field theory

Topological field theory, introduced originally by Atiyah[A], Segal [S] and Witten
[W], promised to systematize a slew of new 3-manifold invariants. The invariants
of a 3-manifold M are thought to arise from path integrals over a space of maps
from M to a target X. The latter is often a manifold, but in interesting cases,
related to gauge theory, it is a stack. One example relevant for us will have X a
holomorphic symplectic manifold, leading to Rozansky-Witten theory [RW]. The
2-dimensional version of this notion quickly found application to the counting of
holomorphic curves, the Gromov-Witten invariants of a symplectic manifold X:
these are controlled by a family of TQFTs parametrized by the even cohomology
space Hev(X).
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2.1. Extended TQFTs. Both theories above have a bearing on my story,
once they are extended down to points. In the original definition, a d-dimensional
TQFT is a symmetric, strongly monoidal functor form the category whose objects
are closed (d− 1)-manifolds and whose morphisms are compact d-bordisms, to the
category Vect of complex finite-dimensional vector spaces; the monoidal structures
are disjoint union and tensor product, respectively. (Some tangential structure on
manifolds is chosen, as part of the starting datum.) Fully extending the theory
means extending this functor to one from the bordism d-category Bordd, whose ob-
jects are points and whose k-morphisms are compact k-manifolds with corners (and
some tangential structure), to some de-looping of the category of vector spaces:
a symmetric monoidal d-category whose top three layers are complex numbers,
vector spaces and linear categories, or a differential graded (dg) version of this.
When d = 2, which most concerns us, the target is usually the 2-category LCat
of linear dg categories, linear functors and natural transformations. The reader
may consult Lurie [L], references therein and the wide following it inspired, for a
precise setting of higher categories.

Example 2.1 (2-dimensional gauge theory with finite gauge group F ). This theory
is defined for unoriented manifolds; among others, the functor ZF which sends a
point ∗ to the category Rep(F ) of (finite-dimensional) linear representations of F ,
the half-circle bordism ⊂: ∅ → {∗, ∗′} to the functor Vect → Rep(F ) ⊗ Rep(F )
sending C to the (2-sided) regular representation of F , the opposite bordism ⊃:
{∗, ∗′} → ∅ to the functor Rep(F )⊗Rep(F )→ Vect sending V ⊗W to the subspace
of F -invariants therein. A closed surface gives a number, which is the (weighted)
count of principal F -bundles. See for instance [FHLT] for a uniform construction
of the complete functor and generalizations.

The first theorem of [L] is that an such extended TQFT Z : Bordd →?? is
determined by its value Z(+) on the point, at least in the setting of framed mani-
folds. The object Z(+), which we call the generator of Z, must satisfy some strong
(full dualizability) conditions, but carries no additional structure, beyond being a
member of an ambient d-category.

On the other hand, the ability to pass to surfaces with less structure than
a framing on their tangent bundle forces additional structure on the generator
Z(+). The point (conceived together with an ambient germ of surface) carries a 2-
framing, on which the group O(d) acts. Lurie’s second theorem states that, given a
tangential structure, encoded in a homomorphism G→ O(d), factoring the theory
Z fromBordd through the categoryBordGd of d-folds withG-structure is equivalent
to exhibiting Z(+) as a fixed-point for the G-action on the image of TQFTs in the
targetd- category (more precisely, the sub-groupoid of fully dualizable objects and
invertible morphisms).

The best-known case of oriented surfaces, when G = SO(2), requires a Calabi-
Yau structure on Z(+). This can be variously phrased: as a trivialization of the
Serre functor, which is an automorphism of any fully dualizable linear dg category
(see Remark 2.3 below); alternatively, as a linear functional on the cyclic homology
of Z(+) whose restriction to Hochschild homology HH∗(Z(+)) induces a perfect
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pairing on Hom spaces:

Hom(x, y)⊗Hom(y, x)→ Hom(x, x)→ HH∗ → C.

This case of Lurie’s theorem recovers earlier results of Costello, Kontsevich and
Hopkins-Lurie [C, KS].

The Hochschild homology HH∗(Z(+)) is meaningful in a different guise: it is
the space of states Z(S1) of the theory, for the circle with the radial framing. The
circle is pictured here with a germ of surrounding surface, and therefore carries a
Z’s worth of framings, detected by a winding number. The Hochschild cohomology
HH∗ goes with the blackboard framing, and the space for the framing with winding
number n is HH∗ of the nth power of the Serre functor. (Of course, for oriented
theories there is no framing dependence, and these spaces agree.)

2.2. Topological group actions. An important point is that the action
of O(2) (and thus G) on the target category Z(+) is topological, or factored through
its topology. There are several ways to formulate this constraint, which is vacuous
when G is discrete. The favored formulation will depend on the nature of the
target category; in the linear case, and when G is connected, we will provisionally
settle for the one in Theorem 2.5 below. Combined with Statement 2.9 below, this
generalizes an old result of Seidel [Sei] on Hamiltonian diffeomorphism groups.

Here are some alternative definitions:

1. We can ask for a local trivialization of the action in a contractible neigh-
borhood of 1 ∈ G, an isomorphism with the trivial action of that same
neighborhood (up to coherent homotopies of all orders).

2. Using the action to form a bundle of categories with fiber Z(+) over the
classifying stack BG, we ask for an integrable flat connection on the resulting
bundle of categories. (Formulating the flatness condition requires some care,
in light of the fiber-wise automorphisms.)

3. Exploiting the contractibility of the group P1G of paths starting at 1 ∈ G,
we can ask for a trivialization of the lifted P1G-action.

Now, the action of the based loop group ΩG (kernel of P1G→ G) is already
trivial (being factored through 1 ∈ G), and the difference of trivializations
defines a (topological) representation of ΩG by automorphisms of the identity
functor in Z(+).

The group ΩG has an E2 structure, seen from its equivalence with the second
loop space Ω2BG; and the representation on IdZ(+) is the 2-holonomy, over
spheres, of the flat connection in #2. Importantly, it is an E2 representation.

Remark 2.2. When G is connected, description #3 above captures all the infor-
mation for the action (up to contractible choices), because the space of trivializa-
tions of a trivial topological action of P1G is contractible.
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Example 2.3. A topological action of the circle on a category is given by a group
homomorphism from Z = π1S

1 = π0ΩS1 to the automorphisms of the identity:
equivalently, a central (in the category) automorphism of each object. Because
there is no higher topology in S1, this also works when the target is a 2-category,
such as the (sub-groupoid of fully dualizable objects in the) 2-category LCat, the
structural SO(2) ⊂ O(2) action gives an automorphism of each category: this is
the Serre functor.

Example 2.4. Endomorphisms of the identity in the linear category Vect are the
complex scalars, so that linear topological representations of a connected G on
Vect are 1-dimensional representations of π0ΩG ∼= π1G. These are the points in
the center of the complexified Langlands dual group G∨C.

Recall that the endomorphisms of the identity in a category (the center) form
the 0th Hochschild cohomology. To generalize the above example to the derived
world, we should include the entire Hochschild cochain complex.

Theorem 2.5. Topological actions of a connected group G on a linear dg-category
C are captured (up to contractible choices) by the induced E2 algebra homomor-
phism from the chains C∗ΩG, with Pontrjagin product, to the Hochschild cochains
of C.

Example 2.6. From a continuous action of G on a space X, we get a locally trivial
action on the cochains C∗X. Indeed, we get an action of ΩG on the free loop space
LX of X. The action is fiber-wise with respect to the bundle ΩX → LX → X.
Let C∗

(
X;C∗Ω̃X

)
be the cochain complex on X with coefficients in the fiber-wise

chains for this bundle. With the fiber-wise Pontrjagin product, this is a model for
the Hochschild cochains of the algebra C∗(X), and the action of ΩG exhibits the
E2 homomorphism in the theorem.

Remark 2.7. The “E2” in the statement is not jus a commutativity constraint,
but can contain (infinite amounts of!) data; see Lesson 3.2.5.

Remark 2.8. One floor below, for 1-dimensional field theories, the category Z(+)
is replaced with a vector space (or a complex), and we recognize #2 above as
defining a topological representation of G. The datum in Theorem 2.5 is replaced
by an (E1) algebra homomorphism from the chains C∗G, with Pontrjagin product,
to End(Z(+)); there is no connectivity assumption. Climbing to the higher ground
of n-categories, we can extract an En+1-algebra homomorphism from C∗ΩnG to
the En Hochschild cohomology; but this misses the information from the homotopy
of G below n.

The following key example captures the relevance of my story to real mathe-
matics. (In fact, it contains all examples I know for topological group actions!)

Conjecture 2.9. Let G act in Hamiltonian fashion action on a symplectic mani-
fold X. Then, G acts topologically on the Fukaya category of X.
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Proof. A Hamiltonian action of G on X defines, in the category of symplectic
manifolds and Lagrangian correspondences, an action of the group object T ∗G.1

This makes the Fukaya category of X into a module category over the wrapped
Fukaya category WF(T ∗G). A theorem of Abouzaid [Ab] identifies the latter with
that of C∗ΩG-modules. The tensor structure is identified with the E2 structure of
the Pontrjagin product, by detecting it on generators of the category (the cotangent
fibers). The resulting structure is equivalent to the datum in Theorem 2.5.

Remark 2.10. It may seem strange to state a conjecture and then provide a
proof. However, the reader will detect certain assumptions which have not been
clearly stated in the conjecture: mainly, functoriality of Fukaya categories under
Lagrangian correspondences. If X is non-compact, equivariance of the wrapping
condition at ∞ is essential; the statement fails for the infinitesimally wrapped
Fukaya category of Nadler and Zaslow [NZ], see below. (Another outline argument
is more tightly connected to holomorphic disks and GC-bundles, but that relies on
details of the construction of the Fukaya category.)

Remark 2.11. A closely related notion to the one discussed, but distinct from it,
is that of an infinitesimally trivialized Lie group action. Here, we ask for the action
to be differentiable, and the restricted action to the formal group Ĝ (equivalently,
the Lie algebra g) should be homologically trivialized. An example is furnished by
an action of G on a manifold X and the induced action on the algebra D(X) of
differential operators: the Lie action of g is trivialized in the sense that it is inner,
realized by the natural Lie homomorphism from g to the 1st order differential
operators. Theorem 2.5 does not usually apply to such situations. With respect
to the alternative definition #2 above, the relevant distinction is between flat and
integrable connections over BG.

2.3. Gauging a topological theory. Given a guantum field theory and
a (compact Lie) group G, physicists normally produce a G-gauged theory in two
stages. The theory is first coupled to a ‘classical gauge background’, a principal
G-bundle. (No connection is needed in the case of topological actions.2) Then, we
‘integrate over all principal bundles’ to quantize the gauge theory.

These two distinct stages are neatly spelt out in the setting of extended TQFTs.
Lurie’s theory already captures the first stage of gauging. Namely, we convert the
principal G-bundle into a tangential structure by choosing the trivial homomor-
phism G → O(2). (Of course, we may add any desired tangential structure, such
as orientability, by switching to G× SO(2)→ O(2), by projection.) Making Z(+)
into a fixed point for the trivial G-action means defining a (topological) G-action
on Z(+). This is the input datum for a classically gauged theory.

Quantizing the gauge theory, or integrating over principal G-bundles, is tricky.
It is straightforward for finite groups: integration of numbers is a weighted sum,

1The moment map µ : X → g∗ appears in the requisite Lagrangian, {(g, µ(gx),x, gx)} ⊂
T ∗G× (−X)×X.

2Flat connections would be needed when G action does not factor through topology, as in
B-model theories.
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and integration of vector spaces and categories is a finite limit or colimit. (The
duality constraints require the limits and colimts to agree; working in characteristic
0 ensures that [FHLT].) For Lie groups G, integration of the numbers requires a
fundamental class on the moduli of principal bundles. For instance, the symplectic
volume form is relevant to topological Yang-mills theory. A limited K-theoretic
fundamental class was defined in [TW], and cohomological classes, such as the
one relevant to topological Yang-Mills theory, can be extracted from it. But this
matter seems worthy of more subtle discussion than space allows here.

In fact, the gauge theory cannot always be fully quantized. The generating
object for the quantum gauge theory is the invariant category Z(+)G, which agrees
with the co-invariant category Z(+)G under mild assumptions. In the framework
of Theorem 2.5, we compute the generator Z(+)G as a tensor product

Z(+)G = Z(+)⊗C∗ΩG Vect (2.1)

with the trivial representation. The 1-dimensional part of the field theory, and
sometimes part of the surface operations, are well-defined; but the complete surface-
level operations often fail to be defined. Thus, for the trivial 2D theory, Z(+) =
dg−Vect with trivial G-action, and the fixed-points are local systems over BG.
This generates a partially defined 2D theory, a version of string topology for the
space BG. The space associated to the circle is the equivariant cohomology H∗G(G)
for the conjugation action, and the theory is defined the subcategory of Bord2

where all surfaces (top morphisms) have non-empty output boundaries for each
component.

This example can be made more interesting by noting that the trivial action of
G on dg−Vect has interesting topological deformations, in the Z/2-graded world;
the notable one comes from the quadratic Casimir inH4(BG), and gives topological
Yang-Mills theory with gauge group G. When G is semi-simple, this theory is
almost completely defined, and the invariants of a closed surface (of genus 2 or
more) are the symplectic volumes of the moduli spaces of flat connections. (Further
deformations exits, by the entire even cohomology of BG and relate to more general
integrals over those spaces.) These should be regarded as twisted Gromov-Witten
theories with target space BG. A starting point of the present work was the abject
failure of the homological calculation (2.1) in these examples: for topological Yang-
Mills theory, (2.1) gives the zero answer when G is simple.

2.4. The space of states. Independently of good behavior of the fixed-
point category Z(+)G, the space(s) of states of the gauged theory are well-defined.
More precisely, each g ∈ G gives an autofunctor g∗ of the category. The Hochshild
cochain complexes HCH∗(g∗;Z(+)) assemble to a (derived) local system H(Z(+))
over the group G, which is equivariant for the conjugation action, and the space
of states for the (blackboard framed) circle in the gauge theory is the equivariant
homology HG

∗ (G;H). It has a natural E2 multiplication, using the Pontrjagin
product in the group. When Z(+) = Vect, with the trivial G-action, we recover
the string topology space HG

∗ (G) of BG by exploiting Poincaré duality on G.3

3The last space goes with the radially framed circle.
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3. The 2-category of Kapustin-Rozansky-Saulina

As the image of the point, an object in the 3-dimensional bordism 3-category,
Lurie’s generator for pure 3-dimensional gauge theory should have categorical
depth 2. My proposal for this generator is a 2-category associated to a certain
holomorphic symplectic manifold, to be described in §5.

Fortunately, the existence of the requisite 2-category has already been conjec-
tured, and a proposal for its construction has been outlined in [KRS, KR]. When
X is compact, this 2-category should generate the Rozansky-Witten theory [RW]
of X. In particular, its Hochschild cohomology, which on general grounds is a 1-
category with a braided tensor structure, should be (a dg refinement of) the derived
category of coherent sheaves on X described in [RW2]. Just like Rozansky-Witten
theory, the narrative takes place in a differential graded world, and in applications,
the integer grading must be collapsed mod 2 (the symplectic form needs to have
degree 2, if the integral grading is to be kept). To keep the language simple, I will
use ‘sheaf’ for ‘complex of sheaves’ and write Coh for a differential graded version
of the category of coherent sheaves, etc.

Remark 3.1. The 2-category may at first appear analogous to the deformation
quantization of the symplectic manifold; but that is not so. That analogue —
a double categorification — is Coh(X) with its braided tensor structure. The
category [KRS] is a ‘square root’ of that, and I will denote it

√
Coh(X) or KRS(X).

3.1. Simplified description. The following partial description of theKRS
2-category applies to a Stein manifold X, when deformations coming from coherent
cohomology vanish.4 In our example, X will be affine algebraic. Among objects of√

Coh(X) are smooth holomorphic Lagrangians L ⊂ X; more general objects are
coherent sheaves of OL-linear categories on such L. (The object L itself stands for
its dg category Coh(L) of coherent sheaves, a generator for the above.) To make
this even more precisee,

√
Coh(X) is the sheaf of global sections of a coherent

sheaf of OX -linear 2-categories, whose localization at any smooth L as above is
equivalent the 2-category of module categories over the sheaf of tensor categories
(Coh(L),⊗) on L; with a bit of faith, this pins down

√
Coh(X), as follows.

For two Lagrangians L,L′ ∈ X, Hom(L,L′) will be a sheaf of categories sup-
ported on L ∩ L′, and a (Coh(L),⊗) − (Coh(L′),⊗) bi-module. Localizing at L,
we choose a (formal) neighborhood identified symplectically with T ∗L, so that
we regard (locally) L′ as the graph of a differential dΨ, for a potential function
Ψ : L→ C. Locally where this identification is valid, Hom(L,L′) becomes equiva-
lent to the matrix factorization category MF (L,Ψ). (See for instance [O].)

3.2. Lessons. Several insights emerge from this important notion.

1. A familiar actor in mirror symmetry, a complex manifold L with potential
Ψ, is really the object in

√
Coh(T ∗L) represented by the graph Γ(dΨ), mas-

querading as a more traditional geometric object. The matrix factorization
4My discussion is faulty in another way, failing to incorporate the Spin structures, which must

be carried by the Lagrangians. I am grateful to D. Joyce for flagging their role.
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categoryMF (L,Ψ) is its Hom with the zero-section. This resolves the contra-
diction in which the restriction of the category MF (L,Ψ) to a sub-manifold
M ⊂ L is commonly taken to be the matrix factorization category of Ψ|M .
That is clearly false in the 2-category of (Coh(L),⊗)-module categories (the
result of localizing to the zero-section L ⊂ T ∗L). For instance, if the crit-
ical locus of Ψ does not meet M , Hom computed in (Coh(L),⊗)-modules
gives zero. Instead, M must be replaced by the object represented by its
co-normal bundle in

√
Coh(T ∗L), whose Hom there with Γ(dΨ) computes

precisely MF (M,Ψ|M ).

2. The well-defined assignment sends (Coh(L),⊗)-module categories to sheaves
of categories with Lagrangian support in the cotangent bundle T̂ ∗L, com-
pleted at the zero-section. Namely, the Hochschild cohomology of such a
category K is (locally on L) an E2-algebra over the second (E2) Hochschild
cohomology of (Coh(L),⊗), which is an E3 algebra. The spectrum of the
latter is T̂ ∗L, with E3 structure given by the standard symplectic form. This
turns SpecHH∗(K) into a coherent sheaf with co-isotropic support in T̂ ∗L,
and K sheafifies over it. The Lagrangian condition is clearly related to a
finiteness constraint, but this certainly shows the need to include singular
Lagrangians in the KRS 2-category.

3. The deformation of a (Coh(L),⊗)-module category M by the addition of a
potential (‘curving’) Ψ ∈ O(L) shifts the support of M vertically by dΨ in
T ∗L. This allows one to move from formal to analytic neighborhoods of L,
if the deformation theory under curvings is well-understood. For instance,
one can compute the Hom between two objects that do not intersect the
zero-section — such as two potentials without critical points — by drawing
their intersection into L: Hom(Γ(dΦ),Γ(dΨ)) = MF (L,Ψ− Φ).

4. More generally, Hamiltonian vector fields on T̂ ∗L give the derivations of√
Coh(T̂ ∗L) defined from its E2 Hochschild cohomology. Hamiltonians van-

ishing on the zero-section preserve the latter, and give first-order automor-
phisms of (Coh(L),⊗).

5. The KRS picture captures in geometric terms sophisticated algebraic infor-
mation. For example, the category Vect can be given a (Coh(L),⊗)-module
structure in many more ways in the Z/2 graded world: any potential Ψ with
a single, Morse critical point will accomplish that. The location of the criti-
cal point p ∈ L misses an infinite amount of information, which is captured
precisely by the graph of dΨ; this is equivalent to an E2 structure on the
evaluation homomorphism OL → Cp at the residue field (cf. Theorem 2.5).

Parts of this story can be made rigorous at the level of formal deformation theory,
see for instance [F], and of course the outline in [KR]. Lesson 3 also offers a
working definition of the 2-category

√
Coh(T ∗L) as that of (Coh(L),⊗)-modules,

together with all their deformations by curvings. On a general symplectic manifold
X, we can hope to patch the local definitions from here.5 It is not my purpose

5If X is not Stein, deformations will be imposed upon this story by coherent cohomology.
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to supply a construction of
√

Coh(X) here — indeed, that is an important open
question — but rather, to indicate enough structure to explain my answer to
the mirror of (non-abelian) gauge theory. I believe that one important reason
why that particular question has been troublesome is that the mirror holomorphic
symplectic manifold, the BFM space of §5, not quite a cotangent bundle, so the
usual description in terms of complex manifolds with potentials is inadequate.

Remark 3.2. If X = T ∗L for a manifold L, and we insist on integer, rather than
Z/2-gradings, then the cotangent fibers have degree 2 and all structure in the KRS
category is invariant under the scaling action on T ∗L. In that case, we are dealing
precisely with (Coh(L),⊗)-modules.

3.3. Boundary conditions and domain walls. The Hom category
Hom(L,L′) for two Lagrangians L,L′ ⊂ X with finite intersection supplies a 2-
dimensional topological field theory for framed surfaces; this follows form its local
description by matrix factorizations. Since X itself aims to define a 3D (Rozansky-
Witten) theory and each of L,L′ is a boundary condition for it, one should picture
a sandwich of Rozansky-Witten filling between a bottom slice of L and a top one of
L′. The formal description is that L,L′ : Id→ RWX are morphisms from the trivial
3D theory Id to Rozansky-Witten theory RWX , viewed as functors from Bord2

to the 3-category of linear 2-categories, and the category Hom(L,L′) of natural
transformations between these morphisms is the generator for this sandwich theory.
Geometrically, it is represented by the interval, with RWX in the bulk and L,L′

at the ends, and is also known as the compactification of RWX along the interval,
with the named boundary conditions.

Factoring this theory through oriented surfaces requires a trace on the Hochschild
homology HH∗ (cf. §2.1). Now, the canonical description of the only non-zero
group, HHdimL, turns out to involve the Spin square roots6 of the canonical bun-
dles ω, ω′ of L,L′ on their scheme-theoretic overlap:

HHdimL Hom(L,L′) ∼= Γ
(
L ∩ L′; (ω ⊗ ω′)1/2

)
. (3.1)

A non-degenerate quadratic form on HHdimL comes from the Grothendieck residue
(and the symplectic volume on X). A non-degenerate trace on HH∗ will thus be
defined by choosing non-vanishing sections of ω1/2, ω′1/2 on L,L′.

Remark 3.3. A generalization of the notion of boundary condition is that of a
domain wall between TQFTs. This is an adjoint pair of functors between the
TQFTs meeting certain (dualizability) conditions, see [L], §4. A boundary condi-
tion is a domain wall with the trivial TQFT. Just as a holomorphic Lagrangian
in X can be expected to define a boundary condition for RWX , a holomorphic
Lagrangian correspondence X ← C → Y should define a domain wall between
RWX and RWY . We shalll use these in §5 and §6, in comparing gauge theories
for different groups.

6The cohomology is easy to pin down canonically, as the functions on L ∩ L′.



12 Constantin Teleman

4. The mirror of abelian gauge theory

This interlude recalls the mirror story of torus gauge theory; except for the difficulty
mentioned in Lesson 1 of §3.2, this story is well understood and can be phrased as
a categorified Fourier-Mukai transform. In fact, in this case we can indicate the
other mirror transformation, from the gauged B-model to a family of A-models.

4.1. The Z-graded story. We will need to correct this when abandoning Z-
gradings, in light of the wisdom of the previous section; nevertheless the following
picture is nearly right.

Proposition 4.1. (i) Topological actions of the torus T on the category Vect are
classified by points in the complexified dual torus T∨C .
(ii) A topological action of T on a linear category C is equivalent to a quasi-coherent
sheafification of C over T∨C .

Proof. Both statements follow from Theorem 2.5, considering that the group ring
C∗(ΩT ) is quasi-isomorphic to the ring of algebraic functions on T∨C , and that a
category naturally sheafifies over its center, the zeroth Hochschild cohomology.

There emerges the following 0th order approximation to abelian gauged mirror
symmetry: if X is a symplectic manifold with Hamiltonian action of T , and X∨ is a
mirror of X — in the sense that Coh(X∨) is equivalent to the Fukaya category F(X)
— then the group action on X is mirrored into a holomorphic map π : X∨ → T∨C .
This picture could be readily extracted from Seidel’s result, [Sei].

Proposition 4.1 interprets the mirror map X∨ → T∨C as a spectral decomposition
of the category F(X) into irreducibles Vectτ . One of the motivating conjectures
of this program gives a geometric interpretation of this spectral decomposition, in
terms of the original manifold X and the moment map µ : X → t∗.

Conjecture 4.2 (Torus symplectic quotients). The multiplicity of Vectτ in F(X)
is the Fukaya category of the symplectic reduction of X at the point Re log τ ∈ t∗,
with imaginary curving (B-field) Im log τ .

Remark 4.3. This is, for now, meaningless over singular values of the moment
map, where there seems to be no candidate definition for the Fukaya category of
the quotient.

Remark 4.4. The conjecture relies on using the unitary mirror of X, constructed
from Lagrangians with unitary local systems. Otherwise, in the toric case, the
algebraic mirror X∨ is T∨C , obviously having a point fiber over every point in T∨C ;
yet the symplectic reduction is empty for values outside the moment polytope.
That polytope is precisely the cut-off prescribed for the mirror by unitarity.

Example 4.5 (Toric varieties). The following construction of mirrors for toric
manifolds, going back to the work of Givental and Hori-Vafa, illustrates both the
conjecture and the need to correct the picture by moving to the KRS category.

Start with the mirror of X = CN , with standard symplectic form, as the space
T∨C := (C×)N with potential Ψ = z1 + . . . zN . Here, T∨ is the dual of the diagonal
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torus acting on X, and the mirror map X∨ → T∨C is the identity.7 For a sub-torus
i : K ↪→ T , the mirror of the symplectic reduction Xq := CN//qK at q ∈ k∗ is
the (torus) fiber X∨q of the dual surjection i∨ : T∨C � K∨C , with restricted super-
potential Ψ. The parameter q lives in the small quantum cohomology of X. We
see here the familiar, but faulty restriction to the fiber of the matrix factorization
category MF (T∨C ,Ψ) of Lesson 3.2, #1. The problem is glaring, because the
original MF category is null.

The mirror X∨q projects isomorphically to the kernel S∨C of i∨; this is the map
π mirror to the action of S = T/K on X.

4.2. Fourier transform. As can be expected in the abelian case, the spec-
tral decomposition of Proposition 4.1 is formally given by a Fourier transform.
Specifically, there is a ‘categorical Poincaré line bundle’

P→ BTC × T∨C ,

with an integrable flat connection along BT . (Of course, P is the universal one-
dimensional topological representation of T , and its fiber over τ ∈ T∨C is Vectτ .)
Given a category C with topological T -action, we form the bundle Hom(P,C) and
integrate along BTC to obtain the spectral decomposition of C laid out over T∨C .

Remark 4.6 (B to A). The interest in this observation stems from a related
Fourier transformation, giving a “B to A” mirror symmetry. There is another
Poincaré bundle Q → BTC × T∨C , with flat structure this time along T∨C . It may
help to exploit flatness and descend to B(TC×π1(T )∨), in which case Q is the line
Vect with action of the group T × π1(T )∨, defined by the Heisenberg C×-central
extension. (The extension is a multiplicative assignment of a line to every group
element, and the action on Vect tensors by that line.)

Fourier transform converts a category C with (non-topological!) T -action into
a local system C̃ of categories over T∨C . The fiber of C̃ over 1 is the fixed-point
category CT , and the monodromy action of π1(T∨) comes from the natural action
thereon of the category Rep(T ) of complex T -representations. For example, when
C = Coh(X), the (dg) category of coherent sheaves on a complex manifold with
holomorphic T -action, CT is, almost by definition, the category of sheaves on the
quotient stack X/TC. The analogue of Conjecture 4.2 is completely obvious here.

I do not know a non-abelian analogue of this “B to A” story.

4.3. The Z/2-graded story. In light of Lesson 3.2.1 and Example 4.5, the
only change needed to reach the true story is to replace the (Coh(T∨C ),⊗)-module
category Coh(X∨), determined from π : X∨ → T∨C , by an object in the KRS
category of T ∗T∨C : the category with T -action sees precisely the germ of a KRS
object near the zero-section.

This enhancement of information relies upon knowing not just the Fukaya cat-
egory F(X) with its torus action, but all of its curvings with respect to functions

7This is readily obtained from the SYZ picture, using coordinate tori as Lagrangians; the
unitary mirror is cut off by |zk| < 1.
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Figure 1. Pictorial representation of
√

Coh(T ∗T∨C )

lifted from the mirror map π : X∨ → T∨C . However, we can expect in examples
that a meaningful geometric construction of the mirror would carry that informa-
tion. For instance, in Example 4.5, we replace (X∨q ,Ψ|X∨q ) and its map to S∨C by
the graph of dΨ|X∨q in T ∗S∨C ; this is the result of intersecting the graph of dΨ with
the cotangent space at q ∈ K∨C .

Figure 1 attempts to capture the distinction between (CohT∨C ,⊗)-modules and
their KRS enhancement. The squiggly line stands for (the support of) a general
object; its germ at the zero-section is the underlying category, with topological
T -action. In that sense, the zero-section represents the regular representation
of T (its Hom category with any object recovers the underlying category.) The
invariant category is the intercept with the trivial representation, the cotangent
space at 1 ∈ T∨C ; other spectral components are intercepts with vertical axes. We
see that the invariant subcategory is computed ‘far’ from the underlying category,
and a homological calculation centered at the zero-section will fail.

5. The non-abelian mirror BFM(G∨)

For torus actions, the insight was that gauging a Fukaya category F(X) amounted
to enriching it from a Coh(T∨C ) module to an object in

√
Coh(T ∗T∨C ). In a cotangent

bundle, this promotion may seem modest. A non-abelian Lie group G will move us
to a more sophisticated holomorphic algebraic manifold which is not a cotangent
bundle. Let T be a maximal torus of G, W the Weyl group and B,B+ two
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opposite (lower and upper triangular) Borel subgroups, N,N+ their unipotent
radicals; Fraktur letters will stand for the Lie algebras and ∨ will indicate their
counterparts in the Langlands dual Lie group G∨.

5.1. The home of 2D gauge theory. The space BFM(G) was intro-
duced and studied by Bezrukavnikov, Mirkovic and Finkelberg [BFM] in general,
but special instances were known in many guises. Here are several descriptions.
Call T ∗regGC ⊂ T ∗GC the Zariski-open subset comprising the regular cotangent
vectors (centralizer of minimal dimension, the rank of G).

Theorem 5.1. The following describe the same holomorphic symplectic manifold,
denoted BFM(G).
(i) The spectrum of the complex equivariant homology HG∨

∗ (ΩG∨), with Pontrjagin
multiplication.
(ii) The holomorphic symplectic reduction of T ∗regGC by conjugation under GC.
(iii) The affine resolution of singularities of the quotient T ∗TC/W , obtained by
adjoining the functions (eα − 1)/α. (α ranges over the roots of g, eα − 1 is the
respective function on TC and the denominator α is the linear function on t∗.)
(iv) BFM

(
SUn

)
is the moduli space of SU2 monopoles of charge n, and is a

Zariski-open subset of the Hilbert scheme of n points in T ∗C× [AH].
(v) BFM(T ) = T ∗TC

Remark 5.2. The moment map zero-fiber for the conjugationGC-action on T ∗regGC
is the (regular) universal centralizer Zreg = {(g, ξ) | gξg−1 = ξ, ξ is regular}. Zreg

is smooth, and BFM(G) = Zreg/GC, with stabilizer of constant dimension and
local slices. This is the only one of the descriptions that makes the holomorphic
symplectic structure evident.

The space BFM(G∨) inherits two projections from T ∗regGC: πv, to the space
(g∨)∗C/G

∨
C
∼= t C/W of co-adjoint orbits, and πh, to the conjugacy classes in G∨C .

Both are Poisson-integrable with Lagrangian fibers. The projection πv will have the
more obvious meaning for gauge theory, capturing the H∗(BG)-module structure
on fixed-point categories. The projection πh is closely related to the restriction to
T (and to the string topology of flag varieties.)

The symplectic structure on BFM(G∨) relates to its nature as (an uncom-
pletion of) the second Hochschild cohomology of the E2-algebra H∗(ΩG).8 In
fact, BFM(G) contains the zero-fiber of πv, Z := SpecH∗(ΩG), as a smooth La-
grangian; it comes from the part of Zreg with nilpotent ξ (cf. Remark 5.2).

Theorem 2.5 and Lesson 3.2.2 sheafify categories with topological G-action over
the formal neighborhood of Z. However, it is the entire space BFM(G∨) which
is the correct receptacle for G-gauge theory: gauged TQFTs are objects in the
2-category

√
Coh(BFM(G∨)). Clearly, that requires a rethinking of the notion:

the definition of ‘topological category with G-action’ as in §2 would complete the
BFM space at the exceptional Lagrangian Z. Loosely speaking, we need to know
a theory together with all its deformations of the group action.

8Of course, the E2 structure is trivial over the complex numbers and the algebra is quasi-
isomorphic to its underlying dg ring of chains.
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Figure 2. BFM space of PSU2; the fiber of πh at 1 is Z∪trivial representation

The Lagrangian Z replaces the zero-section from the torus case, and plays the
role of the regular representation of G: Hom(Z,L) gives the underlying category
of the representation L. The formal calculation is HomC∗ΩG(C∗ΩG;L) = L, if we
use Theorem 2.5 to model representations. Figure 2 below sketches BFM(PSU2).

5.2. Induction by String topology. No map relates BFM(T∨) = T ∗T∨C
and BFM(G∨), because of the blow-up, but a holomorphic Lagrangian correspon-
dence is defined from the branched cover

BFM(G∨) BFM(G∨)×tC/W tCoo // T ∗T∨C . (5.1)

The right map is neither proper not open.9 A holomorphic Lagrangian corre-
spondences could give a pair of adjoint functors between the respective

√
Coh

2-categories, thus a domain wall between T - and G- gauge theories (cf. §3.3). This
is indeed the case, and we can identify the functors.

Theorem 5.3. The correspondence (5.1) matches an adjoint pair of restriction-
induction functors between categorical T - and G-representations. Induction from a
category C with topological T -action is effected by string topology with coefficients
of the flag variety G/T :

Ind(C) = C∗ΩG⊗C∗ΩT C.

Restriction is the obvious functor.
9Z maps to 1 ∈ T∨, but most of the zero-section in T ∗T∨C is missed by the map.
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Remark 5.4. (i) An alternative (slightly worse) description of induction is given
by the category of (derived) global sections RΓ

(
G/T ; C̃

)
for the associated local

system C̃ of categories.
(ii) Neither description is quite correct. Just as the BFM spaces carry more infor-
mation than the category and the action, so does induction.
(iii) For example, inducing from the representation Vectτ , for a point τ ∈ T∨C
which is not central in G, by either method above, will appear to give zero. (This
is what a homological algebra calculation of the curved string topology of G/T for
a non-trivial curving τ ∈ H2(G/T ; C×) gives.) However, geometric induction gives
the fiber of π−1

v (τ). The puzzle is resolved by noting that none of those fibers meet
the regular representation Z, so the underlying categories are null. We are letting
G act on categories without objects, and growing wiser.
(iv) The ‘näıvely induced’ representations can serve to probe the entire BFM
space by abelianization. It is therefor not conceptually more difficult to under-
stand non-abelian gauged mirrors than abelian ones. However, the symplectically
induced representations of the next section are much nicer.

5.3. Alternative model for induction. I close with a new model for
the correspondence (5.1), useful in a later mirror calculation. Call b+,reg ⊂ b+ the
open subset of regular elements. Identify b+ =

(
gC/n+

)∗, B+-equivariantly; the
last space matches the fibers of the bundle, over B+ ⊂ GC, of co-normals to the
N+-translation orbits. Using this to define the left map below and projection on
the right gives a holomorphic Lagrangian correspondence

B+ × b+,reg

B+

xxppppppppppp

$$IIIIIIIII

T ∗regGC//adB+ T ∗TC

having divided by the conjugation action of B∨+. We can also divide out by B+ in
the defining correspondence for BFM(G),

BFM(G) Zreg/B+
oo // T ∗regGC//adB+.

The composition of these two can be shown to yield (5.1) (for the group G).

6. Mirrors of flag varieties

I will now explain the place of flag varieties in the mirror view of gauge theory.
Lifting to the torus-equivariant picture will recover a construction of K. Rietsch [R].

6.1. Flag varieties as domain walls. Let L ⊂ G be a Levi subgroup,
centralizer of a dominant weight λ : l → iR. The flag variety X = G/L is a
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symplectic manifold with Hamiltonian G-action (the co-adjoint orbit of λ), and as
such it should have a mirror holomorphic Lagrangian in BFM(G∨). This will be
true, but we forgot some structure relevant to gauge theory. Namely, we can use
G/L to symplectically induce categorical representations from L to G.

A categorical representation C of L gives the local system of categories C̃ =
G×L C→ X, and we can construct the Fukaya category of X with coefficients in
C̃. (Objects would be horizontal sections of objects over Lagrangians, and Floer
complexes can be formed in the usual way from the Hom-spaces over intersections.)
In fact, the weight λ (or rather, its exponential eλ in the center of L∨C) defines a
topological representation Vectλ of L, and we can think of the ordinary Fukaya
category F(X,λ) as the symplectic induction from the latter. The precise meaning
is that deforming λ in Vectλ achieves the same effect as the matching deformation
of the symplectic form. An imaginary variation of λ (movement in the unitary
group L∨) has the effect of adding a unitary B-field twist to the Fukaya category.

Remark 6.1. Left adjoint to the symplectic induction functor SIndGL is a symplec-
tic restriction from G to L. This is not the ordinary (forgetful) restriction, which
instead is adjoint to string topology induction (§5). For example, when L = T , the
spectral decomposition under T of the symplectic restriction of C would extract
the multiplicities of the F(X, τ) in C, rather than those of the Vectτ .

This pair of functors is a new domain wall between pure 3-dimensional G- and
L-gauge theories. On the mirror side, we can hope to represent a domain wall by a
holomorphic Lagrangian correspondence between BFM(L∨) and BFM(G∨). We
will be fortunate to identify this correspondence as an open embedding.

To recover the mirror of X in its various incarnations (as a symplectic manifold,
or a G-equivariant symplectic one) we must apply boundary conditions to the two
gauge theories, aiming for the ‘sandwich picture’ of a 2D TQFT, as in §3.3. For
example, to find the underlying symplectic manifold (X,λ), we must apply the
representation Vectλ of L and the regular representation Z of G. I shall carry out
this (and a more general) exercise in the final section.

The study of symplectically induced representations can be motivated by the
following conjecture, the evident non-abelian counterpart of Conjecture 4.2 (with
the difference that it seems much less approachable).

Conjecture 6.2. For a Hamiltonian G-action on the compact symplectic mani-
fold X and a regular value µ of the moment map, the Fukaya category F(X//G),
reduced at the orbit of µ (and with unitary B-field iν) is the multiplicity in X of
the representation symplectically induced from Vectµ+iν .

6.2. The Toda isomorphism. The following isomorphism of holomorphic
symplectic manifolds is mirror to symplectic induction. It fits within a broad range
of related results (‘Whittaker constructions’) due to Kostant. Its relation to Fukaya
categories of flag varieties is mysterious, and now only understood with reference to
the appearance of the Toda integrable system in the Gromov-Witten theory of flag
varieties [GK, K]. From that point of view, the isomorphism enhances the Toda
system by supplying the conjugate family of commuting Hamiltonians, pulled back
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from conjugacy classes in the group, rather than orbits the Lie algebra.
The mirror picture of G-gauge theory involves the Langlands dual group G∨

of G, but the notation is cleaner with G. With notation as in §5, call χ : n→ C×
the regular character (unique up to TC-conjugation) and consider the Toda space,
the holomorphic symplectic quotient of T ∗GC

T (G) := (N,χ)\\T ∗GC//(N,χ)

under the left×right action of N , reduced at the point (χ, χ) ∈ n∗ ⊕ n∗.

Theorem 6.3. We have a holomorphic symplectic isomorphism

T (G) = (N,χ)\\T ∗GC//(N,χ) ∼= T ∗regGC//AdGC = BFM(G)

induced from the presentation of the two manifolds as holomorphic symplectic re-
ductions of the same manifold T ∗regGC.

Proof. The N ×N moment fiber in T ∗GC ∼= GC × g∗C (by left trivialization) is

T := {(g, ξ) ∈ GC × g∗C |π(ξ) = π(gξg−1) = χ},

where π : g∗C → n∗ is the projection. As π−1(χ) consists of regular elements, we
may use T ∗regGC instead. Now, N acts freely on π−1(χ), with Kostant’s global
slice, so the N ×N action on T is free also and T (G) = N\T /N is a manifold.

The moment map fibers T and Zreg (for the Ad-action of GC) provide holo-
morphic Lagrangian correspondences

T

}}{{
{{

{{
{{

""EE
EE

EE
EE

E Zreg

{{www
ww

ww
ww

$$JJJJJJJJJ

T (G) T ∗regGC BFM(G)

(6.1)

whose composition T ×T∗regGC Zreg, I claim, induces an isomorphism. Actually,
the clean correspondence must mind the fact that the two actions on T ∗G, of
N ×N and G, respectively, have in common the conjugation action of N (sitting
diagonally in N × N): so we must really factor through T ∗regGC//Ad(N), within
which the co-isotropics T /AdN and Zreg/AdN turn out to intersect transversally.

We check that the composition in (6.1) induces a bijection on points: preser-
vation of the Poisson structure then supplies the Jacobian criterion. Choose
(g, ξ) ∈ T ; then, ξ, gξg−1 ∈ π−1(χ) are in the same GC-orbit in g∗C. Kostant’s slice
theorem ensures that the two elements are then Ad-related by a unique ν ∈ N ,
νgξ(νg)−1 = ξ. There is then, up to right action of N , a unique (g′, ξ′) ∈ Zreg in
the N × N -orbit of (g, ξ). We thus get an injection T (G) ↪→ BFM(G). To see
surjectivity, conjugate a chosen (h, η) ∈ Zreg to bring η into π−1(χ). The result is
in T (and is again unique up to N -conjugation).

Remark 6.4. The space T (G) has a hyperkähler structure; it comes from a third
description, as a moduli space of solutions to Nahm’s equations. This is closely
related to a conjectural derivation of my mirror conjecture (6.5) below from Lang-
lands (electric-magnetic) duality in 4-dimensional N = 4 Yang-Mills theory. (I am
indebted to E. Witten for this explanation.)
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6.3. The mirror of symplectic induction. Inclusion of the open cell
N×w0 ·TC×N ⊂ GC leads to a holomorphic symplectic embedding T ∗TC ⊂ T (G).
Sending a co-tangent vector to its co-adjoint orbit projects T (G) to g∗C//G

ad
C , and

the functions on the latter space lift to the commuting Hamiltonians of the Toda
integrable system; so the theorem completes the picture by providing a comple-
mentary set of Hamiltonians lifted from the conjugacy classes of G.

More generally, if L ⊂ G is a Levi subgroup, with representative wL ∈ L of its
longest Weyl element, and with unipotent group NL = N ∩ LC, then χ restrict to
a regular character of NL and the inclusion

N ×NL
w0w

−1
L · LC ×NL

N ⊂ GC

determines an open embedding T (L) ⊂ T (G). The following is, among others,
a character formula for induced representations. It relies on too many wobbly
definitions to be called a theorem, but assuming it is meaningful, its truth can be
established form existing knowledge.

Conjecture 6.5. Via the Toda isomorphism, the embedding T (L∨) ⊂ T (G∨) is
mirror to symplectic induction from L to G, representing the flag variety G/L as
a domain wall between L- and G-gauge theories.

Example 6.6. With the torus L = T , a one-dimensional representation of T is
described by a point q ∈ T∨, represented in

√
Coh(T ∗T∨) by the cotangent space

at q. Its image under the Toda isomorphism, a Lagrangian leaf Λ(q) ⊂ BFM(G),
is the symplectically induced representation, or the G-equivariant Fukaya category
of the flag variety G/T with quantum parameter q. The analogue of the character
is the structure sheaf OΛ(q), whose algebra of global sections is the G-equivariant
quantum cohomology of G/T [GK].

Remark 6.7. It is difficult to prove the conjecture without a precise definitions (of
equivariant Fukaya categories with coefficients and of the KRS 2-category). Nev-
ertheless, accepting that BFM(G∨) as the correct mirror of G-gauge theory, the
conjecture follows from known results about the equivariant quantum cohomology
of flag varieties [GK, C-F, Mi]. The latter describe qH∗G(G/L) as a module over
H∗(BG) = C[g]G, the algebra of Toda Hamiltonians, induced from the projection
πv. The symplectic condition turns out to pin the map uniquely.

6.4. Foliation by induced representations. Recall (Example 2.4) the
one-dimensional representations of a Levi subgroup L ⊂ G, corresponding to the
points in the center of L∨C . Let us call them cuspidal : they are not symplectically
induced from a smaller Levi subgroup. (Such a symplectic induction produces
representation of rank equal to the Euler characteristic of the flag variety.) The
following proposition suggests that these induced representations are better suited
to spectral theory that the näıvely induced ones of §5.

Theorem 6.8. The space BFM(G∨) is smoothly foliated by symplectic inductions
of cuspidal representations: each leaf comes from a unique cuspidal representation
of a unique Levi subgroup L, with T ⊂ L ⊂ G.
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Proof. The leaves are the fibers of N\T ∨/N → N\G∨C/N , and induction on the
semi-simple rank reduces us to checking that the part of T ∨ which does not come
from any T (L∨), for a proper L ⊂ G, lives over the center of G∨C .

Omit ∨ from the notation and choose (g, ξ) ∈ T . From GC =
∐
wN · wTC ·N ,

we may take g ∈ wTC for some w ∈W . Split g∗C = n∗ ⊕ t∗C ⊕ n∗+; then,

ξ = χ+ η + ν, for some η ∈ tC, ν ∈ n∗+

gξg−1 = χ+ w(η) + ν′, for some ν′ ∈ n∗+

whence we see that w sends each simple negative root either to a simple negative
root, or to a positive root. If w = 1, then g ∈ TC centralizes χ (mod b∗+) and thus
lies in the center of GC. Otherwise, I claim that w = w0w

−1
L , for the Levi L whose

negative simple roots stay negative. Equivalently, the unique simple root system
of g comprising the simple negative roots of L and otherwise only positive roots,
is the wL-transform of the positive root system. This can be seen by choosing a
point ζ+ ε, with ζ generic on the L-fixed face of the dominant Weyl chamber, and
ε a dominant regular displacement: wL(ζ + ε) must be in the dominant chamber
of the new root system.

Example 6.9 (G = SU2). The dual complex group is G∨C = PSL2(C), whose
BFM space is the blow-up of C × C×/{±1} at (0, 1), with the proper transform
of the zero-section {0} × C×/{±1} removed. This is the Atiyah-Hitchin manifold
studied in [AH]. The Z/2-action identifies (ξ, z) with (−ξ, z−1). Projection to the
line of co-adjoint orbits is given by the Toda Hamiltonian ξ2.

The Toda inclusion of T ∗T∨C ∼= C× C× sends a point (u, q) to

ξ2 = u2 − q, z + z−1

4
=
u2

q
− 1

2

(A match of signs is required between z and ξ.) The induced leaves of constant q
are given by

ξ = q

√
z −
√
z
−1

2
,

after lifting to the coordinates ξ,
√
z for the double-cover maximal torus in SL2.

We recognize here the (graph of the differentiated potential in the) S1-equivariant
mirror of the flag variety P1.

The one remaining leaf in BFM(PSU2) is the trivial representation of SU2; it is
the proper transform of T ∗1 C×/{±1}, the image in C×C×/{±1} of) the cotangent
fiber at 1. If we switch instead to PSU(2), the new BFM space (on the Langlands
dual side) is a double cover of the former, and there is a new cuspidal leaf over the
central point (−I2) ∈ SU2, corresponding to the sign representation of π1PSU2.

6.5. Torus-equivariant flag varieties. Restricting the G-action to T ,
the flag manifold G/L is a transformation from L-gauge theory to T -gauge theory,
given by composition of the symplectic induction and string topology domain walls:

T (L∨) � � SInd // T (G∨)
Toda

∼ // BFM(G) ST // BFM(T∨) = T ∗T∨C (6.2)
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The equivariant mirror is a family of 2D TQFTs, which can be defined, for instance,
by a family of complex manifolds with potentials parametrized by the Lie algebra
t C. This family reflects the H∗(BT )-module structure on equivariant quantum
cohomology. When F(G/L) has been represented by an object Λ ∈

√
Coh(T ∗T∨C ),

the family comes from the projection of T ∗T∨C to the cotangent fiber, and the
TQFTs are the fibers of Λ over t C, the Hom categories with the constant sections
of T ∗T∨C .

To recover this family of mirrors from the double domain wall (6.2), we must
use it to pair two Lagrangians, in T (L∨) and in T ∗T∨C . The Lagrangians are

• the Lagrangian leaf Λ(q) ⊂ BFM(L∨) over a point q in the center of L∨C ,
describing a cuspidal representation of L (q is also the quantum parameter
for G/L);

• the constant Lagrangian section Sξ of T ∗T∨C , with fixed value ξ ∈ t C.

Note that Sξ is the differential of a multi-valued character ξ ◦ log : T∨C → C.

Remark 6.10. The relevant TQFT picture is a sandwich with triple-decker filling:
the base slice is the representation Vectq of L corresponding to Λ(q), a boundary
condition for L-gauge theory. The filling of the sandwich is a triple layer of L,G, T
gauge theories, separated by the SInd and string topology domain walls in (6.2).
The sandwich is topped with the slice Sξ, a boundary condition for T -gauge theory.
Its underlying representation category is null, if ξ 6= 0; Sξ is a deformation of the
regular representation of T by the multi-valued potential ξ ◦ log.

6.6. Rietsch mirrors. Building on ideas of Peterson and earlier calculations
of Givental-Kim, Ciocan-Fontanine, Kostant and Mihalcea [GK, C-F, K, Mi], Ri-
etsch [R] proposed torus-equivariant complex mirrors for all flag varieties G/L.

Let us recover these from my story by computing the answer outlined above.
Recall (§5.3) the Lagrangian correspondence

T ∗TC ← B+ × b+,reg → T ∗regGC,

appearing in the alternate model for the string topology induction. Compose
this with the Toda construction to define the following holomorphic Lagrangian
correspondence between T (G) and BFM(T ) = T ∗TC:

T
P

}}{{
{{

{{
{{

""EE
EE

EE
EE

E B+ × b+,reg

xxqqqqqqqqqq
p

%%LLLLLLLLLL

T (G) T ∗regGC T ∗TC

(6.3)

Proposition 6.11. Correspondence (6.3) is the composition ST ◦ Toda of (6.2).

Sketch of proof. In the jagged triangle of correspondences below, the left edge is
the Toda isomorphism, the right edge the correspondence (6.3) and the bottom
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edge the string topology domain wall. The long, counterclockwise way from top
to right involves division by the complementary subgroups N and B+ of GC; so
it seems reasonable that the composition should agree with the undivided corre-
spondence (6.3) on the right edge:

T /Ad(N) //

��

T(G) Too

��

T ∩
(
B+ × b+,reg

)
��

oo

Zreg/Ad(N)

��

// T ∗regGC//AdN Zreg(B+)/B+

yy
$$

T ∗regGC B+ × b+,reg

��

oo

Zreg

B+

{{wwwwwwwwww

$$IIIIIIIIIIII

B+ × b+,reg

B+

zzvvvvvvvvvv

%%KKKKKKKKK

BFM(G) T ∗regGC//AdB+ BFM(T)

The argument exploits the regularity of the Lie algebra elements. The inter-
section in the upper right corner comprises the pairs (b, β) ∈ B+ × b+ with b
centralizing β ∈ E + t C. (E = χ under n+

∼= n∗.) That is a slice for the con-
jugation B+-action on the regular centralizer Zreg(B+) in B+, which makes clear
the isomorphism with the fiber product in the center the triangle; and the map is
compatible with the Toda isomorphism on the left edge.

We now calculate the pairing Sξ ⊂ T (L∨) and Λ(q) ⊂ T ∗T∨C by the correspon-
dence (6.3) for the dual group G∨. We do so by computing in T ∗regG

∨
C

Hom
(
p−1Sξ, P

−1Λ(q)
)
.

The two Lagrangians meet over the intersection

B∨+ ∩
(
N∨ · w0w

−1
L L∨C ·N∨

)
⊂ G∨C.

Lift ξ ◦ log to B∨+ by p; over B∨+, p−1Sξ is the conormal bundle to B∨+ ⊂ G∨C shifted
by the graph of d(ξ ◦ log). (The shifted bundle is well-defined, independently of
any local extension of the function ξ ◦ log.)

The Lagrangian P−1Λ(q) lives over the open set N∨ · w0w
−1
L L∨C · N∨ in G∨C ,

where it is the shifted co-normal bundle to the submanifold

M := N∨ · w0w
−1
L q ·N∨ ∼=

N∨ ×N∨

diag(N∨ ∩ L∨C)
,

shifted into T by the graph of the differential of the following function f :

f : n1 · w0w
−1
L l · n2 7→ χ(log n1 + log n2).
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Now, B∨+ and M meet transversally in G∨C , in a manifold isomorphic to a
Zariski-open in the flag variety G∨/L∨; this is the Rw0,wL

of [R]-. Transversality
permits us to dispense with the conormal bundles, and identify Hom(Sξ,Λ(q)) with
the pairing, in the cotangent bundles, between graphs of the restricted functions
to B∨+ ∩M

HomT∗(B∨+∩M) (Γ(d(ξ ◦ log)),Γ(df)) ;

this is the matrix factorization category MF
(
B∨+ ∩M ; f − ξ ◦ log

)
. This is the

Rietsch mirror of G/L.
The last mirror comes with a volume form, which defines the trace on HH∗. In

the Lagrangian correspondence, we need instead a half-volume form on each leaf.
The two leaves Sξ and Λ(q) do in fact carry natural half-volumes, translation-
invariant for the groups (B and N ×N) and along the cotangent fibers. Rietsch’s
volume form on the mirror Rw0,wL

comes from the product of these half-volumes.
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