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Abstract

This is the third paper in a series relating the equivariant twisted K-theory of a
compact Lie group G to the “Verlinde space” of isomorphism classes of projective
lowest-weight representations of the loop groups. Here, we treat arbitrary compact
Lie groups. We also discuss the relation to semi-infinite cohomology, the fusion
product of Conformal Field theory, the rôle of energy and the topological Peter-
Weyl theorem.

Introduction

In [FHT1, FHT2] the twisted equivariant K-theory of a compact Lie group was described in terms
of positive energy representations of its loop group. There, we assumed that the group was con-
nected, with torsion-free fundamental group. Here, we remove those restrictions; we also relax
the constraints on the twisting, assuming only its regularity. Additional constraints allow the in-
troduction of an energy operator, matching the rotation of loops, and lead to the positive energy
representations relevant to conformal field theory. Finer restrictions on the twisting lead to a struc-
ture of 2-dimensional topological field theory, the “Verlinde TFT”. While this is not fully discussed
here — see instead [FHT4] for the topological story, and [FHT3, §8] for the relation to holomorphic
bundles — we do prove two key underlying results: we identify the fusion product with the topo-
logical cup-product, and equate the bilinear form of the topological TFT with the duality pairing
between irreducible representations at opposite levels.

Capturing the Verlinde ring topologically lets us revisit, via twisted K-theory, some construc-
tions on representations that were hitherto assumed to rely on the algebraic geometry of loop
groups. Thus, restriction to and induction from the maximal torus recover in twisted K-theory the
semi-infinite restriction and induction on representations due to Feigin and Frenkel [FF]. The energy
operator comes from the natural circle action on the quotient stack of G, under its own conjugation
action. The numerator in the character formula can be obtained by dualising the Gysin inclusion
of the identity in G. Next, the cup-product action of R(G) on Kτ

G(G) corresponds to the fusion of
Conformal Field Theory, defined via holomorphic induction. Finally, the Borel-Weil theorem for
the “annular” flag variety of a product of two copies of the loop group is now interpreted as a
topological Peter-Weyl theorem. This last result can also be interpreted as a computation of the
bilinear form in the Verlinde TFT, but can also be further extended to an index theorem for gener-
alised flag varieties of loop groups, in which twisted K-theory provides the topological side. We
refer to [FHT3, §8] for a verification of this result in the special case of connected groups with free
π1, and to [T2] for further developments concerning higher twistings of K-theory.

The paper is organised as follows. Chapter I states the main theorems and describes the requi-
site technical specifications. Two examples are discussed in Chapter II: the first relates our theorem
in the case of a torus to the classical spectral flow of a family of Dirac operators, while the second
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recalls the Dirac family associated to a compact group [FHT2], whose loop group analogue is the
“non-abelian spectral flow” implementing our isomorphism. Chapter III computes the twisted
K-theory Kτ

G(G) topologically, by reduction to the maximal torus and its normaliser in G. Chapter
IV reviews the theory of loop groups and their lowest-weight representations; the classification
of irreducibles in §10 reproduces the basis for Kτ

G(G) constructed in Chapter III. The Dirac family
in Chapter V assigns a twisted K-class to any (admissible) representation of the loop group, and
this is shown to recover the isomorphism already established by our classification. Chapter VI
gives the topological interpretation of some known constructions on loop group representations
as discussed above. Appendix A reviews the diagram automorphisms of simple Lie algebras and
relates our definitions and notation to those in Kac’s monograph [K].
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Index of Notation

Groups
G, G1 Compact Lie group and its identity component
T, N Maximal torus and its normaliser in G
W, W1 Weyl groups N/T, N ∩ G1/T of G and G1
G( f ), N( f ) Centralisers in G and N of the class of f in π0G §6
g, t, gC, tC Lie algebras and their complexifications
n ⊂ gC Sub-algebra spanned by the positive root vectors
〈 | 〉, {ξa} Basic inner product on g (when semi-simple); orthonormal basis §4
ρ, θ ∈ t∗ Half-sum of positive roots, highest root §4
h∨ (for simple g) Dual Coxeter number ρθ + 1 §4
ε; g, t Diagram automorphism of g; ε-invariant sub-algebras of g, t §7
W; T Weyl group of g; torus exp(t) §7
ρ, θ ∈ t∗ Half-sum of positive roots in g, highest g-weight of g/g §9
R, R∨ Root and co-root lattices
Λ, Λ; Λτ Weight lattices of T and T; lattice of τ-affine weights

Loop Groups
LG, L f G Smooth loop group and f -twisted loop group §I
LGτ Central extension by T with cocycle τ
Lg, L f g Smooth loop Lie algebras
L′g, L′G Laurent polynomial Lie algebra, loop group §8, §16
Ne

aff = Γ f N Group of (possibly f -twisted) geodesic loops in N §6
We

aff extended affine Weyl group Ne
aff/T

Waff(g, f ) f -twisted affine Weyl group of g §10.4, §A.4
a, a (simple g) Alcove of dominant ξ ∈ t, t with θ(ξ) ≤ 1, resp. θ(ξ) ≤ 1/r §8.3, §9.4
τ · a∗ ⊂ t Product of the centre of g and the [τ]-scaled alcoves on simple factors §10
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Twistings
τ; [τ] (graded) 2-cocycle on LG; level in H1

G(G; Z/2)× H3
G(G; Z) §2.1

κτ Linear map H1(T)→ H2(BT) given by contraction with [τ] §6
σ, σ LG-cocycle of the Spin modules for Lg, L f g §1.6
σ(t), σ(t) W-cocycle for the spinors on t and t §6
τ′, τ′′ Twisting for the We

aff-action on Λτ; shifted twisting τ′ − σ(t) §6
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I Statements

Throughout the paper, cohomology and K-theory have integer coefficients, if no others are spec-
ified. K-theory has compact supports. For proper actions of non-compact groups, or for stacks in
general, this refers to the quotient space. For a twisting τ on X, the twisted K-theory will be de-
noted Kτ(X). This is a Z/2-graded group, whose two components are denoted Kτ+0(X), Kτ+1(X).
For a central extension Gτ of G, the Grothendieck group of τ-projective representations is denoted
by Rτ(G); it is a module over the representation ring R(G). Note that, when τ is graded, this
module can have an odd component Rτ+1, cf. §1.3.

1. Main theorems

(1.1) Simply connected case. The single most important special case of our result concerns a simple,
simply connected compact Lie group G. Central extensions of its smooth loop group LG by the
circle group T are classified by their level, the Chern class c1 ∈ H2(LG) = Z of the underlying
circle bundle. These extensions are equivariant under loop rotation. Among the projective rep-
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resentations of LG with fixed level k are the positive energy ones: they are those which admit an
intertwining action of the group of loop rotations, with spectrum bounded below. Working up
to infinitesimal equivalence, as is customary with non-compact groups, these representations are
semi-simple, with finitely many irreducibles, all of them unitarisable [PS]. The free abelian group
on the irreducible isomorphism classes is the Verlinde ring of G at level k; the multiplication is the
fusion of Conformal Field Theory. We denote this ring by Rk(LG), by analogy with the represen-
tation ring R(G) of G.

Theorem 1. If k + h∨ > 0, Rk(LG) is isomorphic to the twisted K-theory Kτ+dim G
G (G).

Here, G act on itself by conjugation and τ is a twisting for the G-equivariant K-theory of G whose
class [τ] ∈ H3

G(G) ∼= Z equals k + h∨, with the dual Coxeter number h∨ of G. Because H2
G(G) = 0,

the K-groups are canonically determined by the twisting class alone. It is part of our statement
that the K-groups are supported in degree dim G (mod 2). The ring structure on K-theory is
the convolution (Pontryagin) product. The isomorphism is established by realising both sides as
quotient rings of R(G), via holomorphic induction on the loop group side, and via the Thom push-
forward from the identity in G, on the K-theory side.

(1.2) General groups. The isomorphism between the two sides and the relation between level and
twisting cannot be described so concisely for general compact Lie groups. This is due to the
presence of torsion in the group H3 of twisting classes, to the additional type of twistings classified
by H1

G(G; Z/2), related to gradings of the loop group, and to the fact that the two sides need not
be quotients of R(G). (A simple statement can be given when G is connected and π1(G) is free,
as in [FHT3, §6], precisely because both sides are quotients of R(G)). For a construction of the
map via a correspondence induced by conjugacy classes, we refer to [F2] (see also §6.11 here).
Ignoring the difficulties for a moment, there still arises a natural isomorphism between the twisted
equivariant K-groups of G and those of the category of positive energy representations at a shifted
level, provided that:

(i) we use Z/2-graded representations;
(ii) we choose a central extension of LG which is equivariant under loop rotation;

(iii) the cocycle of the extension satisfies a positivity condition.

The energy operator cannot be defined without (ii), and without (iii), representations of positive
energy do not exist. While (iii) is merely a question of choosing signs correctly, there are topo-
logical obstructions to equivariance in (ii) when G is not semi-simple (for instance, the absence of
symmetry in the level, §15). The problem here is caused by tori, whose loop groups, ironically,
have a straightforward representation theory.

This formulation is unsatisfactory in several respects. The loop group side involves the energy,
with no counterpart in KG(G). Instead, a rotation-equivariant enhancement of the latter will give
a better match. There is also the positivity restriction, whereas the topological side is well-behaved
for regular twistings (§2). There is, finally, the unexplained “dual Coxeter” shift.

We now formulate the most canonical statement. This need not be the most comprehensible
one (see Theorems 3 and 5 instead). However, it has the virtue of explaining the shift between
level and twisting as the projective cocycle of the positive energy spinors on LG. Gradings in (i),
if not originally present in the twisting τ, are also imposed upon us by the spinors whenever the
Ad-representation of G does not spin.

(1.3) Untwisted loop groups.1 Let G be any compact Lie group and LGτ a smooth T-central extension
of its loop group. We allow LG to carry a grading, or homomorphism to Z/2; this is classified by

1The term twisting for loop groups (§1.5) and for K-theory refers to different things, but both uses are well-
entrenched.
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an element of H1
G(G1; Z/2) and is notationally incorporated into τ. An Ad-invariant L2 norm

on Lg defines the graded Clifford algebra Cliff(Lg∗), generated by odd elements ψ(µ), µ ∈ Lg∗,
with relations ψ(µ)2 = ‖µ‖2. (For a more canonical construction, this algebra must be based on
half-forms on the circle, which carry a natural bilinear form.)

A τ-representation of LG is a graded representation of LGτ on which the central circle acts
by the natural character. We are interested in complex, graded τ-representations of the crossed
product LG n Cliff(Lg∗), with respect to the co-adjoint action. Graded modules for Cliff(Lg∗)
can be viewed as b-projective representations of the odd vector space ψ(Lg∗), where b is the L2

inner product, so we are considering (τ, b)-representations of the graded super-group LGs := LG n
ψ(Lg∗). Subject to a regularity restriction on τ, an admissibility condition on representations will
ensure their complete reducibility (§2).

A super-symmetry of a graded representation is an odd automorphism squaring to 1. Let
Rτ+0(LGs) be the free Z-module of graded admissible representations, modulo the super-symmetric
ones, and Rτ+1(LGs) that of representations with a super-symmetry, modulo those carrying a
second super-symmetry anti-commuting with the first. These should be regarded as the LGs-
equivariant Kτ-groups of a point. The reader should note that defining K-theory for graded al-
gebras a delicate matter in general [Bl]; the shortcut above, also used in [FHT3, §4], relies on the
semi-simplicity of the relevant categories of modules.

Since Kτ
G(G) is a KG(G)-module, it carries in particular an action of the representation ring

R(G). Fusion with G-representations defines an R(G)-module structure on Rτ(LGs); the definition
is somewhat involved, and we must postpone it until §16. Here is our main result.

Theorem 2. For regular τ, there is a natural isomorphism Rτ(LGs) ∼= Kτ
G(G) of (graded) R(G)-modules,

wherein K-classes arise by coupling the Dirac operator family of Chapter V to admissible LGs-modules.

1.4 Remark. For twistings that are transgressed from BG in a suitable sense [FHT4], both sides carry
isomorphic Frobenius ring structures. The portion of the product that exists for any regular twist-
ing is the R(G)-module structure, discussed in §16. A geometric construction of the duality pairing
is described in §17.

(1.5) Twisted loop groups. When G is disconnected, there are twisted counterparts of these notions.
For any f ∈ G, the twisted loop group L f G of smooth maps γ : R → G satisfying γ(t + 2π) =
f γ(t) f−1 depends, up to isomorphism, only on the conjugacy class in π0G of the component
f G1 of f . Let [ f G1] ⊂ G denote the union of conjugates of f G1; the topological side of the
theorem is Kτ

G ([ f G1]), while the representation side involves the admissible representations of
L f G n ψ(L f g

∗).

(1.6) Removing the spinors. A lowest-weight spin module S for Cliff(Lg∗) (see §2.9) carries an in-
tertwining projective action of the loop group LG. Denoting by σ (σ, in the f -twisted case) the
projective cocycle of this action and by d the dimension of the centraliser G f , a Morita isomorphism

Rτ(L f Gs) ∼= Rτ−σ−d(L f G) (1.7)

results from the fact that an admissible, graded τ-module of L f G n Cliff(L f g
∗) has the form H⊗S,

for a suitable (τ − σ)-representation H of L f G, unique up to canonical isomorphism. Note in
particular the dimension shift by d, from the parity of the Clifford algebra. We obtain the following
reformulation of Theorem 2.

Theorem 3. For regular τ, there is a natural isomorphism Kτ
G ([ f G1]) ∼= Rτ−σ−d(L f G).

The loop group may well acquire a grading from the spinor twist σ, even if none was present in
τ; if so, Rτ−σ(L f G) is built from graded representations, as in §1.3.
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(1.8) Classifying representations. In proving the theorems, we compute both sides of the isomor-
phism in Theorem 3. More precisely, we compute the twisted K-theory by reduction to the torus
and the Weyl group, and produce an answer which agrees with the classification of admissible
representations in terms of their lowest weights. In fact, twisted K-theory allows for an attractive
formulation of the lowest-weight classification for disconnected (loop) groups, as follows.

Choose a maximal torus T ⊂ G which, along with a dominant chamber, is stable under f -
conjugation. (Such tori always exists, see Proposition 7.2.) Recall that the extended affine Weyl
group We

aff for L f G is π0 of L f N, the group of f -twisted loops in the normaliser N of T. Let T ⊂ T
denote the subtorus centralised by f , and Λτ the set of its τ-affine weights. The conjugation
action of L f N on T descends to an action of We

aff on Λτ, which preserves the subset Λτ
reg of regular

weights. A tautological twisting τ′ is defined for this action, because every weight defines a T-
central extension of its centraliser in We

aff (see §10.4 for details). Finally, after projection to the finite
Weyl group W = N/T, We

aff also acts on the Lie algebra t of T.

Theorem 4. The category of graded, admissible τ-representations of L f G n Cliff(L f g
∗) is equivalent to

that of τ′-twisted We
aff n Cliff(t)-modules on Λτ

reg.

It follows that the corresponding K-groups agree. We reduce Theorem 4 in §10 to the well-known
cases of simply connected compact groups and tori.

Computing both sides is a poor explanation for a natural isomorphism, and indeed we im-
prove upon this in Chapter V by recalling the map from representations to K-classes using fami-
lies of Dirac operators. The construction bypasses Theorem 4 and ties in beautifully with Kirillov’s
orbit method, recovering the co-adjoint orbit and line bundle that correspond to an irreducible rep-
resentation. Another offshoot of this construction emerges in relation with the semi-infinite coho-
mology of Feigin and Frenkel [FF], for which we give a topological model (Theorem 14.11): for
integrable representations, the Euler characteristic of semi-infinite Ln-cohomology becomes the
restriction from G to T, on the K-theory side. While this can also be checked by computing both
sides, our Dirac family gives a more natural proof, providing the same rigid model for both.

(1.9) Loop rotation. Assume now that the extension LGτ carries a lifting of the loop rotation action
on LG. It is useful to allow fractional lifts, that is, actions on LGτ of a finite cover T of the loop
rotation circle; such a lift always exists when G is semi-simple (Remark 15.3). If so, admissible
τ-representations carry an intertwining, semi-simple action of this new T. Schur’s lemma implies
that the action is unique up to an overall shift on any irreducible representation. A further posi-
tivity condition (§15.5) on τ ensures that the spectrum of this action is bounded below, and its real
infinitesimal generator is then called the energy.

In this favourable situation, we can incorporate the loop rotation into our results. The requisite
object on the topological side is the quotient stack of the space A of g-valued smooth connections
on the circle by the semi-direct product T n LG, the loop group acting by gauge transformations
and T by loop rotation. We denote the twisted K-theory of this stack by Kτ

T(GG). This notation,
while abusive, emphasises that the T-action makes it into an R(T)-module; its fibre over 1 is the
quotient by the augmentation ideal of R(T).

Theorem 5. If the regular twisting τ is rotation-equivariant, Kτ
T(GG) is isomorphic to the Rτ-group of

graded, admissible, representations of T n LGs (cf. §1.3). It is a free module over R(T), and its fibre over 1
is isomorphic to Kτ

G(G).

The formulation, while a bit awkward, has the virtue of being canonical: there is no natural
isomorphism of Kτ

T(GG) with Kτ
G(G) ⊗ R(T). A noteworthy complement to Theorem 5 is that

Kτ
T(GG) contains the Kac numerator formula for LGτ-representations, §15.6. It would be helpful

to understand this as a twisted Chern character, just as the the Kac numerator at q = 1 is the Chern
character for Kτ

G(G), see [FHT3].
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2. Technical definitions

In this section, we describe our regularity conditions on the central extension LGτ and define the
class of admissible representations. There is a topological and an analytical component to regularity.

(2.1) Topological regularity. The central extension LGτ has a characteristic class [τ] ∈ H3
G(G1), the

level.2 It is an equivariant version of the Dixmier-Douady invariant of a gerbe, and arises from the
connecting arrow in the exponential sequence for group cohomology with smooth circle coeffi-
cients, H2

LG(T) → H3
LG(Z): the last group is purely topological, and equals H3(BLG) ∼= H3

G(G1).
When g is semi-simple, the smooth-cochain group cohomology H2

LG(R) vanishes [PS, XIV], and
[τ] then determines the central extension LGτ, up to isomorphism. In any case, restricting to a
maximal torus T ⊂ G and writing H2

T for H2(BT), we obtain a class in

H3
T(T) = H1(T)⊗ H2

T ⊕ H3(T).

For classes arising from central extensions, it turns out that the H3(T) component vanishes. In
view of the isomorphism H1(T) ∼= H2

T, we make the following

2.2 Definition. We call τ topologically regular iff [τ] defines a non-singular bilinear form on H1(T).

For a twisted loop group L f G, topological regularity is detected instead by the f -invariant sub-
torus T ⊂ T in an f -stable maximal torus T as in §1.8. Restricting [τ] there leads to a bilinear form
on H1(T), and regularity refers to the latter. In the next section, we will see how the bilinear form
captures the commutation in LTτ of the constant loops T with the group of components π1T.

(2.3) Analytic regularity. This condition, which holds in the standard examples, concerns the centre
z ⊂ g, and ensures that the topologically invisible summand Lz/z does not affect the classification
of representations of LGτ. Split Lz into the constants z and their L2-complement V, and observe
that LG is the semi-direct product of the normal subgroup exp(V) by the subgroup Γ of loops γ
whose velocity dγ · γ−1 has constant z-projection. Because the action of Γ on V factors through the
finite group π0G, invariant central extensions of exp(V) have a preferred continuation to LG.

2.4 Definition. τ is analytically regular iff it is the sum of an extension of Γ and a Heisenberg
extension of exp(V), and, moreover, the Heisenberg cocycle ω : Λ2V → iR has the form ω(ξ, η) =
b(Sξ, η), for some skew-adjoint Fredholm operator iS on V.

The standard example3 has S = id/dt, an unbounded operator, so we really ask that S/(1 +
√

S∗S)
should be Fredholm. We need to tame ω for the Dirac constructions in Chapter V. For twisted
loop groups, the analytic constraints refer to L f z

/
z f .

(2.5) Linear splittings. Restricted to any simple summand in g, every extension class is a multiple
of the basic one in §8.1, and is detected by the level [τ]. However, the cocycle ω : Λ2Lg → iR
depends on a linear splitting of the extension

0→ iR→ Lgτ → Lg→ 0. (2.6)

For the unique g-invariant splitting, S is a multiple of id/dt. Preferred splittings for the twisted
loop groups also exist; they are discussed in §9. Hence, subject to topological regularity, and using
the preferred splittings, the second part of Condition (2.4) holds for the entire Lie algebra. Varying
the splitting by a representable linear map Lg → iR, that is, one of the form η 7→ ω(ξ, η) (with a
fixed ξ ∈ Lg) changes S by an inner derivation. We assume now that such a splitting has been
chosen.

2For graded central extensions, [τ] has an additional component in H1
G(G; Z/2), but this plays no role in the regular-

ity conditions.
3This is the only possibility for Diff(S1)-equivariant extensions [PS, VIII].
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2.7 Remark. (i) S must vanish on z, because the latter exponentiates to a torus, over which any
T-extension is trivial. The Heisenberg condition allows ker S ∩ Lz to be no larger. Combining this
with the discussion of simple summands shows that, for regular τ, ker S is the Lie algebra of a
full-rank compact subgroup of LG. This is the constant copy of G, for the standard splitting.
(ii) Assuming rotation-equivariance (§1.9), S commutes with d/dt and Γ with V; this justifies our
first analytic constraint in (2.4). However, the constraint needed for our classification of admissible
representations is weaker: namely, conjugation by Γ should implement a representable change in
any splitting of (2.6) over V. Indeed, if Adγ changes the splitting by η 7→ ω(ξ, η) for some (γ-
dependent) ξ ∈ V, then the alternate copy of Γ in L f G, which replaces γ by e−ξγ, decomposes the
latter as a semi-direct product of exp(V)τ by a central extension of the new Γ. The new Γ-extension
may differ from the original, but it has the same topological level.

(2.8) Lowest-weight representations. The semi-positive spectral projection of S is an ω-isotropic sub-
algebra P ⊂ LgC; we call it the positive polarisation. The strictly positive part U ⊂ P is a Lie ideal,
and ker S ⊗ C is isomorphic to P/U. A linear splitting in §2.5 restricts to a Lie algebra splitting
over P. A lowest weight τ-representation of Lg is one generated by an irreducible module of ker S,
which is killed by the lifted copy of U in (2.6).

The lowest-weight condition depends on S and on the splitting of (2.6) over the centre z. How-
ever, if we insist on integrability of the representation to the identity component of the loop group
(see §8.5), lowest-weight modules are irreducible, unitarisable, and their Hilbert space comple-
tions are unchanged under a representable variation of that splitting.

(2.9) Admissible representations. A projective representation of LG is called admissible if it decom-
poses as a finite-multiplicity sum of Hilbert space completed lowest-weight representations of the
Lie algebra. Assuming topological regularity, any integrable lowest-weight representation of Lg

exponentiates to an action of the identity component of LG on the Hilbert space completion. This
induces an admissible representation of the full loop group. Moreover, at fixed level, there are
finitely many irreducibles, up to isomorphism; see §10.

There is a similar notion of lowest-weight and admissibility for Cliff(Lg∗)-modules, using the
same polarisation. (Note that U is b-isotropic.) As in the finite-dimensional case, there are one or
two isomorphism classes of lowest-weight representations, according to whether dim g is even or
odd, and they are irreducible. The numbers are switched if we ask for graded representations; any
of the graded irreducibles is called a spin module. The K-theory of graded, admissible Cliff(Lg∗)-
modules (as in §1.3) is Z, in degrees dim G (mod 2). The two spin modules, in the even case,
differ by parity-reversal, and represent opposite generators of K0. (In the odd case, two opposite
generators come from the two choices of a super-symmetry on the irreducible spin module.)

2.10 Remark. The algebraic approach to representations starts from the Laurent polynomial loop al-
gebra L′g and the finite-multiplicity sums of integrable lowest-weight modules of L′gnCliff(L′g∗).
These are the Harish-Chandra modules underlying our admissible representations. However, as
our Dirac construction of K-classes involves the smooth loop group and its unitary representa-
tions, we must work analytically.

II Two examples

We recall from [FHT2] two examples relevant to the construction of the Dirac operator families in
Chapter IV, which relate representations to K-theory classes. The first concerns the group LT of
loops in a torus; the second is a finite-dimensional Dirac family, which leads to an interpretation
of our theorem as an infinite-dimensional Thom isomorphism.
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3. Spectral flow over a torus

(3.1) The circle [APS]. Let D/ := d/dθ be the one-dimensional Dirac operator on the complex Hilbert
space L := L2(S1; C), acting as in on the Fourier mode einθ . For any ξ ∈ R, the modified operator
D/ξ := D/ + iξ has the same eigenvectors, but with shifted spectrum i(n + ξ). Let M : L → L be
the operator of multiplication by eiθ . The relation M−1D/ξ M = D/ξ+1 shows that the family D/ξ ,
parametrised by ξ ∈ R, descends to a family of operators on the Hilbert bundle R×Z L over R/Z

(where we let M generate the Z-action on L).
Following the spectral decomposition of D/ξ , we find that one eigenvector crosses over from

the negative to the positive imaginary spectrum as ξ passes an integer value. Thus, the dimen-
sion of the positive spectral projection, although infinite, changes by 1 as we travel once around
the circle R/Z. This property of the family D/ξ is invariant under continuous deformations and
captures the following topological invariant. Recall [ASi] that the interesting component of the
space Fredsa of skew-adjoint Fredholm operators on L has the homotopy type of the small unitary
group U(∞); in particular, π1Fredsa = Z. (The other two components, of essentially positive and
essentially negative Fredholm operators, are contractible.) Weak contractibility of the big unitary
group allows us to trivialise our Hilbert bundle on R/Z, uniquely up to homotopy; so our family
defines a map from the circle to Fredsa, up to homotopy. This map detects a generator of π1Fredsa.

(3.2) Generalisation to a torus. A metric on the Lie algebra t of a torus T defines the Clifford algebra
Cliff(t∗), generated by the dual t∗ of t. Denote by ψ(µ) the Clifford action of µ ∈ t∗ on a complex,
graded, irreducible spin module S(t) = S+(t) ⊕ S−(t) [ABS]. Let L± = L2(T) ⊗ S±(t), denote
by D/ the Dirac operator ∑a ∂/∂θa ⊗ ψa on L := L+ ⊕ L−, and consider the family of operators
parametrised by µ ∈ t∗,

D/µ = D/ + iψ(µ) : L+ → L−.

Let Π = (2π)−1 log 1 be the integer lattice in t, isomorphic to π1T. For a weight λ ∈ Π∗ :=
Hom(Π; Z), let Mλ : L → L be the operator of multiplication by the associated character eiλ :
t 7→ tiλ. The relation M−λ ◦D/µ ◦ Mλ = D/µ+λ shows that D/µ descends to a family of fibre-wise
operators on the Hilbert bundle t∗ ×Π∗ L over the dual torus T∗ := t∗/Π∗. Here, Π∗ acts on t∗ by
translation and on L via the M. As before, contractibility of the unitary group leads to a continuous
family of Fredholm operators over T∗. When ` := dim t is odd, we choose a self-adjoint volume
form v ∈ Cliff1(t∗). This commutes with all the ψ• and converts D/µ to a skew-adjoint family
v ·D/µ of operators acting on L+. Thus, in every case, we obtain a class in K`(T∗). This represents
the K-theoretic volume form; more precisely, it is a Fredholm model for the Thom push-forward
of the identity in T∗.

(3.3) Representations and twisted K-classes. Relating this construction to our concerns requires a bit
more structure, in the form of a linear map τ : Π → Π∗ (not related to the metric). A central
extension Γτ of the product Γ := Π× T by the circle group T is defined by the commutation rule

ptp−1 = t · tiτ(p) p ∈ Π, t ∈ T and tiτ(p) ∈ T. (3.4)

The group Γτ has a unitary representation on L2(T), with T acting by translation and Π by the
Mτ(p)’s. If τ has full rank, L2(T) splits into a finite sum of irreducible τΓ-representations F[λ], each
of them comprising the weight spaces of T in a fixed residue class [λ] ∈ Π∗/τ(Π). Moreover,
these are all the unitary τ-irreducibles of Γ, up to isomorphism. (This will be shown in §10.)

Now, τ also induces a map T → T∗, where-under the pull-back of L splits, according to the
splitting of L2(T) into the F[λ]. Each component carries the lifted Dirac family D/ξ := D/ + iψ(τ(ξ)),
descending to a spectral flow family over T. Except at the single value exp(τ−1[−λ]) ∈ T of the
parameter, D/• is invertible on the fibres F[λ] ⊗ S.
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All families F[λ] ⊗ S have the same image in K`(T), but this problem is cured by remembering
the T-action, as follows. Instead of viewing the D/• as families over T, we interpret them as τΓ-
equivariant Fredholm families parametrised by t. Now, t is a principal Π-bundle over the torus T,
equivariant for the trivial action of T on both, and the central extension τΓ defines a twisting for the
T-equivariant K-theory of T: see [FHT1, §2]. Classes in Kτ+0

T (T) are described by Γ-equivariant
families of Fredholm operators, parametrised by t, on τ-projective unitary representations of Γ;
twisted K1-classes are represented by skew-adjoint families. Thus, our families D/ξ : F[λ] ⊗ S+ →
F[λ] ⊗ S− (respectively v ·D/ξ on F[λ] ⊗ S+ in odd dimensions) give classes in Kτ+`

T (T). A special
case of our main theorem asserts that, when τ is regular, these classes form a Z-basis of the twisted
K-groups in dimension ` (mod 2), while the other K-groups vanish.

3.5 Remark. The inverse map from Kτ+`
T (T) to representations of Γτ ought to be “integration over

t” from Kτ+`
Γ (t) to Rτ+0(Γ). This is consistent with our interpretation of our main theorem as an

infinite-dimensional Thom isomorphism, on the space of connections over the circle (Chapter V).
However, we only know how to define Rτ(Γ) in terms of C∗-algebras.

(3.6) Direct image interpretation. Here, we give a topological meaning for the family (D/•, L); this
will be used in §17. We claim it represents the image of the unit class [1] under the Gysin map

p∗ : K0(T)→ Kτ−`
T (T).

To define p∗, we must trivialise the lifted twisting p∗τ. Recall that the twisting τ for the (trivial)
T-action on T is the groupoid defined from the action of Γτ on t. The matching model for p∗τ on
T = t/Π comes from the restricted extension Πτ, and this is trivialised by its construction (3.4).
The class [1] then corresponds to the trivial line bundle on t with trivial Π-action.

We now give an equivalent, but more concrete model for p∗. Replace K∗(T) by K∗T(T × T),
where T translates the second factor; the projection P to the first factor replaces p. If we represent
T by the Γ-action groupoid on t × T, where Π and T act by translation on t, resp. T, then the
twisting P∗τ is represented by the action of Γτ on t× T.

CallO(τ) the trivial line bundle on t× T, but with the translation action of T and with Π-action
via the operators Mτ(•). The two assemble to a τ-action of Γ, soO(τ) gives a class in Kτ+0

T (T× T).
We claim that this is the image of [1] under the trivialisation of p∗τ. Indeed, our model for p∗τ as
the action of Πτ on t maps to the model for P∗τ by inclusion at t× {1}; thereunder, O(τ) restricts
to the trivial bundle with trivial Π-action.

The Gysin image P∗[1] is now represented by any Γτ-invariant family of Dirac operators on the
fibres of P, and (D/•, L) is an example of this.

(3.7) Relation to the loop group LT. Decompose LT as Γ× exp(V), where V = Lt	 t. Central exten-
sions of exp(V) by the circle group T are classified by skew 2-forms ω on V. We choose a regular
such form, in the sense of §2.4, together with a positive isotropic subspace U ⊂ VC. There exists
then, up to isomorphism, a unique irreducible, unitary projective Fock representation F of exp(V)
which contains a vector annihilated by U. The sum of Γτ and our extension of exp(V) is a T-central
extension LTτ of LT, whose irreducible admissible representations are isomorphic to the F[λ] ⊗ F.
Our construction assigns to each of these a class in Kτ+`

T (T).
We will extend this construction, and the resulting correspondence between LG-representations

and twisted K classes, to arbitrary compact groups G. Observe, by factoring out the space of based
loops, that Γτ-equivariant objects over t are in natural correspondence to LTτ-equivariant ones
over the space A of t-valued connection forms on the circle, for the gauge action; and it is in this
form that our construction of the Dirac spectral flow generalises. The explicit removal of the Fock
factor F has no counterpart for non-abelian groups, and the same effect is achieved instead by
coupling the Dirac operator to the spinors on Lt/t.
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4. A finite-dimensional Dirac family

We now recall from [FHT2] the finite-dimensional version of our construction of twisted K-classes
from loop group representations (Chapter V). For simplicity, we take G to be simple and simply
connected. Choosing a dominant Weyl chamber in t defines the nilpotent algebra n spanned by
positive root vectors, the highest root θ and the Weyl vector ρ, the half-sum of the positive roots.
Roots and weights live in t∗, a weight λ defines the character eiλ : T → T, sending e ξ ∈ T to eiλ(ξ).

The basic invariant bilinear form 〈 | 〉 on g is normalised so that the long roots have square-
length 2. Define the structure constants f c

ab by [ξa, ξb] = f c
abξc, in an orthonormal basis {ξa} of

g with respect to this bilinear form.4 Note that f a
bc f c

ad = 2h∨δbd, where h∨ = ρθ + 1 is the dual
Coxeter number. Let Cliff(g∗) be the Clifford algebra generated by elements ψa dual to the basis
ξa, satisfying ψaψb + ψbψa = 2δab, and let S = S+ ⊕ S− be a graded, irreducible complex module
for it. This is unique up to isomorphism and (if dim g is even) up to parity switch. There is a
unique action of g on S compatible with the adjoint action on Cliff(g∗); the action of ξa can be
expressed in terms of Clifford generators as

σa = −1
4

f a
bc · ψbψc.

It follows from the Weyl character formula that S is a sum of 2ddim t/2e copies of the irreducible
representation V−ρ of g of lowest weight (−ρ). The lowest-weight space is a graded Cliff(t∗)-
module; for dimensional reasons, it is irreducible.

(4.1) The Dirac operator. Having trivialised the Clifford and Spinor bundles over G by left transla-
tion, consider the following operator on spinors, called by Kostant [K1] the “cubic Dirac operator”:

D/ = Ra ⊗ ψa +
1
3

σa · ψa = Ra ⊗ ψa − 1
12

fabcψaψbψc, (4.2)

where Ra denotes the right translation action of ξa on functions. Let also Ta = Ra + σa be the total
right translation action of ξa on smooth spinors.

4.3 Proposition.
[
D/, ψb] = 2Tb; [D/, Tb] = 0.

Proof. The second identity expresses the right-invariance of the operator, while the first one fol-
lows by direct computation:[

D/, ψb
]

= Ra ⊗
[
ψa, ψb

]
+

σa

3

[
ψa, ψb

]
− 1

3

[
σa, ψb

]
· ψa

= 2Rb +
2
3

σb −
1
3

f b
ca · ψcψa

= 2(Rb + σb).

(4.4) The Laplacian. The Peter-Weyl theorem decomposes L2(G; S) as
⊕

λ V∗−λ⊗V−λ⊗ S, where the
sum ranges over the dominant weights λ of g. Left translation acts on the left, Ra on the middle
and σa on the right factor. Hence, D/ acts on the two right factors alone. As a consequence of
(4.3), the Dirac Laplacian D/2 commutes with the operators T• and ψ•. As these generate V−λ ⊗ S
from its −(λ + ρ)-weight space, D/2 is determined from its action there. To understand this action,
rewrite D/ in a root basis of g,

D/ = Rj ⊗ ψj +
1
3

σjψ
j + Rα ⊗ ψ−α + R−α ⊗ ψα +

1
3
(
σαψ−α + σ−αψα

)
, (4.5)

4We use the Einstein summation convention, but will also use the metric to raise or lower indexes as necessary,
when no conflict arises.
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where the j’s label a basis of t and α ranges over the positive roots. The commutation relation
[σ−α, ψα] = ψ(−2iρ), where summation over α has been implied, converts (4.5) to

D/ = Rj ⊗ ψj +
1
3

σjψ
j − 2i

3
ψ(ρ) + Rα ⊗ ψ−α + R−α ⊗ ψα +

1
3
(
σαψ−α + ψασ−α

)
,

and the vanishing of all α-terms on the lowest weight space leads to the following

4.6 Proposition. (i) D/ = −iψ(λ + ρ) on the −(λ + ρ)-weight space of V−λ ⊗ S.
(ii) D/2 = −(λ + ρ)2 on V−λ ⊗ S.

(4.7) The Dirac family. Consider now the family D/µ := D/ + iψ(µ), parametrised by µ ∈ g∗. Conju-
gation by a suitable group element brings µ into the dominant chamber of t∗. From (4.6), we obtain
the following relations, where 〈T|µ〉 represents the contraction of µ with T ∈ g∗ ⊗ End (V ⊗ S), in
the basic bilinear form (the calculation is left to the reader).

4.8 Corollary. (i) D/µ = iψ(µ− λ− ρ) on the lowest weight space of V−λ ⊗ S.
(ii) D/2

µ = −(λ + ρ− µ)2 + 2i〈T|µ〉 − 2〈λ + ρ|µ〉.

(4.9) The kernel. Because i〈T|µ〉 ≤ 〈λ + ρ|µ〉, with equality only on the −(λ + ρ)-weight space, D/µ

is invertible on V−λ ⊗ S, except when µ is in the co-adjoint orbit O of (λ + ρ). In that case, the
kernel at µ ∈ g∗ is that very weight space, with respect to the Cartan sub-algebra tµ and dominant
chamber defined by the regular element µ. This is the lowest-weight line of V−λ tensored with the
lowest-weight space of S, and is an irreducible module for the Clifford algebra generated by the
normal space t∗µ to O at µ. More precisely, the kernels over O assemble to the normal spinor bundle
to O ⊂ g∗, twisted by the natural line bundle O(−λ− ρ). Finally, at a nearby point µ + ν, with
ν ∈ t∗µ, D/µ+ν acts on ker(D/µ) as iψ(ν).

(4.10) Topological interpretation. The family of operators D/µ on V−λ ⊗ S is a compactly supported
K-cocycle on g∗, equivariant for the co-adjoint action of G. As before, when dim g is odd, we
use the volume form v to produce the skew-adjoint family vD/µ, which represents a class in K1

G.
Our computation of the kernel identifies these classes with the Thom classes of O ⊂ g∗, with
coefficients in the natural line bundle O(−λ− ρ). Sending V−λ to this class defines a linear map

R(G)→ Kdim g
G (g∗). (4.11)

There is another way to identify this map. Deform D/µ to iψ(µ) via the (compactly supported
Fredholm) family ε ·D/ + iψ(µ). At ε = 0 we obtain the standard Thom class of the origin in g∗,
coupled to V−λ. Therefore, our construction is an alternative rigid implementation of the Thom
isomorphism K0

G(0) ∼= Kdim g
G (g∗).

The inverse isomorphism is the push-forward from g∗ to a point. In view of our discussion,
this expresses V−λ as the Dirac index ofO(−λ− ρ) over O, leading to (the Dirac index version of)
the Borel-Weil-Bott theorem. The affine analogue of the Thom isomorphism (4.11) is Theorem 3,
equating the module of admissible projective representations with a twisted KG(G).

(4.12) Application to Dirac induction. For later use, we record here the following proposition; when
combined with the Thom isomorphisms and the resulting twists, it gives the correct version of
Dirac induction for any compact Lie group G (not necessarily connected). Let N ⊂ G be the nor-
maliser of the maximal torus T. We have a restriction map KG(g∗) → KN(t∗) and an “induction”
KN(t∗)→ KG(g∗) (Thom push-forward from t∗ to g∗, followed by Dirac induction from N to G).

4.13 Proposition. The composition KG(g∗)→ KN(t∗)→ KG(g∗) is the identity.
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Proof. Express the middle term as KG(G×N t∗), with the left action of G on the induced space. The
map from G ×N t∗ to g∗ sends (g, µ) to gµg−1. Since N meets every component of G (Prop. 7.2),
this map is a diffeomorphism over regular points. Every class in KG(g∗) is the Thom push-forward
of a class [V] ∈ KG(0). Deforming this to D/ + iψ(µ) leads to a class supported on a regular orbit; a
fortiori, our composition is the identity on such classes, hence on the entire K-group.

III Computation of twisted KG(G)

In this chapter, we compute the twisted K-theory Kτ
G(G) by topological methods, for arbitrary

compact Lie groups G and regular twistings τ. A key step is the reduction to the maximal torus,
Proposition 7.8. Our answer takes the form of a twisted K-theory of the set of regular affine
weights at level τ, equivariant under the extended affine Weyl group (§6.3, §6.4). This action has
finite quotient and finite stabilisers, and the Kτ-theory is a free abelian group of finite rank. For
foundational questions on twisted K-theory, we refer to [FHT1] and the references therein.

5. A “Mackey decomposition” lemma

The key step in our computation of KG(G) is a construction generalising Example 1.13 in [FHT1]
and Lemma 2.14 in [FHT3]. It is a topological form of the Mackey decomposition of irreducible
representations of a group, when restricted to a normal subgroup; this analogy will become es-
sential in §10.6.

(5.1) Construction. Let H be a compact group acting on a compact Hausdorff space X, τ a twisting
for H-equivariant K-theory, M ⊆ H a normal subgroup acting trivially on X. We make the sim-
plifying assumption that the H-action has contractible local slices: that is, each x ∈ X has a closed
H-neighbourhood of the form H ×Hx Sx, with an Hx-contractible Sx. The following data can then
be extracted from this:

(i) an H-equivariant family, parametrised by X, of T-central extensions Mτ of M;
(ii) an H/M-equivariant covering space p : Y → X, whose fibres label the isomorphism classes

of irreducible, τ-projective representations of M;
(iii) an H-equivariant, tautological projective bundle PR → Y, whose fibre PRy at y ∈ Y is the

projectivised τ-representation of M labelled by y;
(iv) a class [R] ∈ KPR

H (Y), represented by R;
(v) a twisting τ′ for the H/M-equivariant K-theory of Y, and an isomorphism of H-equivariant

twistings τ′ ∼= p∗τ −PR.

Items (iii) and (v) are only defined up to canonical isomorphism. Note that, if Mτ is abelian, as
will be the case in our application, then PR = Y, which can be taken to represent the zero twisting.
However, [R] is not the identity class [1], because of the non-trivial M-action on the fibres Ry.

5.2 Lemma (Key Lemma). The twisted K-theories Kτ′
H/M(Y) and Kτ

H(X) are naturally isomorphic.

Proof. We claim that the following composition is an isomorphism:

Kτ′
H/M(Y) −→ Kτ′

H(Y) ∼= Kp∗τ−PR
H (Y)

⊗[R]−−→ Kp∗τ
H (Y)

p!−→ Kτ
H(X). (5.3)

By the usual Mayer-Vietoris argument (for closed coverings), it suffices to prove this H-locally on
the base X. Our slice assumption reduces us to the case when X is a point x and H = Hx.

Having a statement about groups alone, it is more convenient to use the model of twistings
as (graded) central extensions by T, and K-classes as twisted virtual representations. Decompose
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a τ-representation V of H under Mτ and distribute the isotypical components into a τ-twisted,
H-equivariant vector bundle over the set Yx of irreducible τ-representations of M. (H permutes
Yx through its conjugation action on M.) This bundle necessarily has the form R⊗W, where R is
the tautological bundle from before, and W is a τ′ = (τ − PR)-twisted H/M-bundle over Y. In
the opposite direction, the direct sum V of components W⊗ R, for a τ−PR-twisted H/M-bundle
W over Yx, carries a τ-twisted action of H. The assignments V 7→ W and W 7→ V are mutually
inverse, and the second assignment is our composition (5.3).

5.4 Remark. (i) The local statement in the proof is a weaker form of a result (Thm. 10.7 below) that
we shall use in the classification of loop group representations.
(ii) The inverse map to (5.3) lifts a class from Kτ+∗

H (X) to Kp∗τ+∗
H (Y), tensors with the dual class

[R∨] ∈ K−PR
H (Y), and then extracts the M-invariant part. However, the last step requires a bit of

care when using projective bundles, as it involves the Morita isomorphism relating two different
projective bundle representatives for the same twisting.

6. Computation when the identity component is a torus

To ensure consistency of notation when the identity component G1 is a torus T, we write N for G
and W for π0N. Denoting, for any f ∈ N, by N( f ) the stabiliser in N of the component f T, we
can decompose Kτ

N(N) as a sum over representatives f ∈ N of the conjugacy classes in W:

Kτ
N(N) ∼=

⊕
f

Kτ
N( f ) ( f T) . (6.1)

(6.2) The identity component. With H = N and M = X = T in construction 5.1, Lemma 5.2 gives
Kτ

N(T) = Kτ′
W(Y). It is easy to describe the bundle p : Y → T. A twisting class [τ] ∈ H3

N(T) restricts
to H3

T(T), hence to H1(T)⊗H2
T, and contraction with the first factor gives a map κτ : H1(T)→ H2

T.
This gives a translation action of Π := π1T on the set Λτ of τ-affine weights of T, and Y is the
associated bundle t×Π Λτ. If κτ is injective, as per our regularity condition (2.2), Y is a union of
copies of t, labelled by Λτ

/
κτ(Π) , and integration along t gives

Kτ′
W(Y) = Kτ′−σ(t)−dim T

W

(
Λτ
/

κτ(Π)
)

,

where the down-shift σ(t) in the twisting is defined by a W-equivariant Thom class of t, repre-
sented by a choice of spinors S(t) with projective W-action.

(6.3) Affine Weyl action. We reformulate this construction by observing that the level [τ] ∈ H3
N(T)

has a leading term in H1
W(T; H2

T), with respect to the Hochschild-Serre spectral sequence Ep,q
2 =

Hp
W(T; Hq

T)⇒ Hp+q
N (T). This term captures the W-action on the covering Y of T, but, more impor-

tantly, defines an affine action on Λτ of the extended affine Weyl group W n Π, extending the action
of Π. Comparing orbits and stabilisers gives an equivalence of categories of equivariant bundles,
and hence an isomorphism

Kτ′−σ(t)
W

(
Λτ
/

κτ(Π)
)

= Kτ′−σ(t)
WnΠ (Λτ) .

(6.4) A general component. Let now T f be the T-centraliser of f ∈ N and T its identity component.
Then, f T is a homogeneous space, with discrete isotropy, for the combined action of N( f ) /T by
conjugation and of t := t f by translation. We obtain an N( f ) n t-equivariant isomorphism of the
form

f T ∼= [(N( f ) /T ) n t]
/

We
aff , (6.5)

where the stabiliser We
aff of f is expressed, by projection to N( f )/T, as a group extension

1→ Π→We
aff → W̃ f → 1, (6.6)
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where Π := π1T and W̃ f := [N( f )/T] f is in turn an extension of W f (the W-centraliser of the
component f T) by the finite group [T/T] f :

1→ [T/T] f → W̃ f →W f → 1.

Exactness on the right follows from the vanishing of H1
〈 f 〉(T/T); that, in turn, follows from the

absence of f -invariants in π1(T/T).
With X = f T, H = N( f ) and M = T in (5.1), an N( f )-equivariant twisting τ defines a covering

space Y → f T, with fibres the sets Λτ of τ-affine weights of T. Via (6.5), this cover is associated to
an affine action of We

aff on Λτ, which is classified by the leading component of [τ] ∈ H3
N( f )( f T) in

H1
N( f )/T( f T; H2

T) = H1
We

aff
(H2

T). (6.7)

6.8 Theorem. (i) We have a natural isomorphism Kτ
N( f ) ( f T) = Kτ′

We
aff

(Λτ × t).

(ii) If τ is regular, this is also Kτ′−σ(t)−dim t
We

aff
(Λτ), and is free, of finite rank over Z.

Proof. The first part is Lemma 5.2. Provided that all stabilisers of We
aff on Λτ are finite, part (ii)

follows from (i) by integration along t, and σ(t) is the twisting of the equivariant Thom class.
Now, Π ⊂ We

aff has finite index, and acts on Λτ by translation, via the linear map κτ : Π→ Λ,
defined by restricting [τ] to H3

T(T). Topological regularity of τ implies finiteness of the quotient
Λτ/We

aff and of all stabilisers.

6.9 Remark. The action of N( f ) n t on f T leads to the presentation

f T ∼= N( f ) n t/Ne
aff,

where the stabiliser Ne
aff of f is an extension 1 → T → Ne

aff → We
aff → 1. Without Lemma 5.2, the

isomorphism (6.5) identifies Kτ
N( f )( f T) with Kτ

Ne
aff

(t). The right-hand side has a sensible topolog-
ical interpretation as the K-theory of the associated quotient stack [FHT1]. It is tempting to inte-
grate along t and land in the Ne

aff-equivariant twisted K-theory of a point. However, no topological
definition of K-theory that we know allows this operation (cf. Remark 3.5); this could perhaps be
done by C∗-algebra methods.

(6.10) Loop group interpretation. The isomorphism (6.5) identifies We
aff with π1 of the homotopy

quotient of f T by N( f ). This quotient turns out to be homotopy equivalent to the classifying
space BL f N. We can reveal this using the gauge action of L f N on connections on a fixed principal
N-bundle over the circle, with topological type [ f T]. Fixing the fibre over a base-point, the space
of holonomies becomes f T, while the residual symmetry group is N( f ). Finally, the space of
connections is contractible.

Thus, We
aff = π0L f N. Now, each component of L f N contains loops of minimal length, and so

the subgroup Γ f N ⊂ L f N of f -twisted geodesic loops is an extension of We
aff by T, just like Ne

aff. In
fact, Γ f N is isomorphic to Ne

aff: to equate them, re-interpret the presentation of f T in Remark 6.9
as the quotient of N( f )× t, the set of flat bundles based at one point and with constant connection
form, under the gauge action of Γ f N.

The action of We
aff on Λτ and its twisting τ′ also have a loop group description. The connection

picture gives an equivalence between the quotient stacks f T/N( f ) (by conjugation) and t/Ne
aff

(via We
aff). Our twistings come from T-central extensions (Ne

aff)
τ of Ne

aff. The action of We
aff on Λτ

is then induced by the conjugation action of (Ne
aff)

τ on T. The subgroup of (Ne
aff)

τ
λ stabilising a

weight λ ∈ Λτ is an extension of (We
aff)λ by Tτ. Pushing this out by the affine weight λ gives a

T-central extension of (We
aff)λ, and these extensions assemble to the twisting τ′.
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(6.11) Induction from conjugacy classes. The following result, together with Theorem 7.8 in the next
section, is the basis for our original construction [F2] of twisted K-classes. For each element of
the natural basis of Theorem 6.8.ii, it selects a distinguished N( f )-conjugacy class in f T, up to an
overall ambiguity coming from the Lie algebra of the centre of the group (see Remark 6.13). We
shall revisit this when discussing the Dirac families in Chapter V.

6.12 Proposition. If τ is regular, Kτ
N(N) is spanned by classes supported on single conjugacy classes.

Proof. Let us focus on the conjugation action of N( f ) on f T. An affine action of We
aff on t is inher-

ited from the conjugationntranslation action of the ambient group (N( f )/T) n t. There is also a
We

aff-action on the affine copy Λτ ⊗R of t∗, defined from the earlier action on Λτ. Such actions are
classified respectively by the groups

H1
We

aff
(t) ∼= HomW̃ f (Π, t) and H1

We
aff

(t∗) ∼= HomW̃ f (Π, t∗)

(W̃ f acts by conjugation). The first class is given by the natural map Π → t; the second, by the
map κτ ⊗R. Hence, the two actions of We

aff are isomorphic by some translate κτ
ν : t → t∗ of the

R-linearised map κτ ⊗R.
A class in Kτ′−σ(t)

We
aff

(Λτ) can now be pushed forward to Kτ′
We

aff
(Λτ × t) by using the graph of the

inverse map (κτ
ν )−1. Under (6.8.i), its image in Kτ

N( f )( f T) is supported on a single conjugacy class,
whenever the original lived on a single We

aff-orbit.

6.13 Remark. (i) κτ
ν descends to a W f -affine isogeny ιτ : f T → Λτ ⊗T. The quotient spaces f T/W̃ f

and f T/N( f ) are isomorphic: this is because f T covers f T/T and W̃ f surjects onto W f (§6.4).
The conjugacy classes appearing in Proposition 6.12 lie in the fibre of ι over the base-point Λτ

of the second torus. Specifically, a class in the (twisted) KWe
aff

(Λτ) supported on a We
aff-orbit Ω

corresponds to one in Kτ
N( f )( f T) with support at the single W̃ f -orbit f · exp

(
(κτ

ν )−1Ω
)
.

(ii) An ambiguity in the construction results from our freedom in identifying t and t∗ as W f -affine
spaces, as we are free to translate by the W f -invariant part of t.

7. General compact groups

For any compact Lie group G, we will describe Kτ
G(G) in terms of the maximal torus T of G and

its normaliser N. We must first recall some facts about disconnected groups; readers focusing on
the connected case may skip ahead to §7.7. We keep the notations of §6.

(7.1) Diagram automorphisms. Choose a set of simple root vectors in gC, satisfying, along with their
conjugates and the simple co-roots, the standard sl2 relations.

7.2 Proposition. Every outer automorphism of g has a distinguished implementation, called diagram au-
tomorphism, which preserves t and its dominant chamber and permutes the simple root vectors.

Proof. The variety of Cartan sub-algebras in g has the rational cohomology of a point, so any au-
tomorphism of g fixes a Cartan sub-algebra, by the Lefschetz theorem. Composing with a suitable
inner automorphism ensures that we preserve t and the dominant chamber. Conjugation by T
provides the freedom needed to permute the simple root vectors without scaling.

7.3 Corollary. As extension of π0G by the identity component G1, the group G has a reduction to an
extension by the centre of G1.

Proof. The subgroup of G-elements whose Ad-action on g is a diagram automorphisms meets
every component of G, and meets G1 in its centre. This is our reduction.
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(7.4) Conjugacy classes in G. The push-out of the extension (7.3) to the maximal torus T is called
a quasi-torus QT ⊂ G; it meets every component of G in a translate of T. QT depends on T and
a choice of dominant chamber. Choose f ∈ QT; its Ad-action on the dominant chamber must
fix some interior points, so t = t f contains g-regular elements. The identity component T of the
invariant subgroup T f is then a maximal torus of the centraliser G f of f .

Call W = N/T, W1 = (N ∩ G1)/T the Weyl groups of G and G1; we have W = π0G n W1, by
(7.3). Call [ f ] the image of f in the quotient f T/T by T-conjugation. Conjugation by N( f ), the
subgroup of N preserving the component f T, descends to an action of the group W f = π0N( f )
on f T/T. Let W := W f ∩W1, and W̃ its extension by [T/T] f restricted from the group W̃ f of (6.6).

7.5 Lemma. (i) The space of conjugacy classes f G1/G1 is ( f T/T) /W .
(ii) The Weyl group of G f

1 is an extension by π0T f of the W-stabiliser of [ f ].

Proof. Part (i) reformulates Theorem ?.? of [BtD]: indeed, f T/T is the quotient of f T under conju-
gation by [T/T] f , whence it follows that ( f T/T) /W ∼= f T/W̃. That is the description in [BtD].

The normaliser of T in G f
1 is N ∩ G f

1 , by regularity, and exactness of 1 → T f → N ∩ G f
1 → W

implies (ii).

7.6 Remark. Translation by f identifies f T/T with the co-invariant torus Tf (quotient of T by the
sub-torus {x f x−1 f−1 | x ∈ T}). The W-action on f T/T is affine with respect to the quotient W-
action on Tf . However, the two W-actions agree when f is a diagram automorphism ε: W indeed
isomorphic to the Weyl group of gε (Appendix A).

(7.7) The Weyl map ω. Decompose Kτ
G(G) =

⊕
f Kτ

G( f ) ( f G1) over a collection of representatives
f ∈ QT of the conjugacy classes in π0; G( f ) denotes the stabiliser of the component f G1. The
G( f )-equivariant map

ω : G( f )×N( f ) f T → f G1, g× f t 7→ g · f t · g−1

induces two morphisms in twisted K-theory, restriction ω∗ and induction ω∗:

Kτ
N( f ) ( f T) ∼= Kτ

G( f )

(
G( f )×N( f ) f T

) ω∗−→←−
ω∗

Kτ
G( f ) ( f G1) .

The names will be justified in §14.

7.8 Theorem. The composition ω∗ ◦ω∗ is the identity.

Consequently, Kτ
G( f )( f G1) is a summand in Kτ

N( f )( f T), split as an R(G)-module. We will now
idenfity it.

(7.9) Affine-regular weights. Recall that regular conjugacy classes in f G1 are those with minimal sta-
biliser dimension. Any f T-representative then has infinitesimal stabiliser t (because t does contain
g-regular elements, as noted in §7.4). Call a weight in Λτ affine-regular if it corresponds to a regular
conjugacy class in f T, under the isomorphism κτ

ν : t → t∗ from in the proof of Proposition 6.12.
While there is an ambiguity in defining κτ

ν , it is subsumed by translation by the W-invariant part
of t, which lies in the centre of g (see §A.1): so it does not affect regularity. Clearly, affine regularity
is preserved by the group We

aff defined in the previous section.

7.10 Theorem. Kτ
G( f )( f G1) is the summand in Kτ

N( f )( f T) corresponding to the regular weights:

Kτ
G( f )( f G1) = Kτ′−σ(t)−dim T f

We
aff

(
Λτ

reg

)
.
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With respect to Proposition 6.12, we are keeping the K-theory classes induced from regular conju-
gacy classes in G.

7.11 Remark. We
aff is called the f -twisted, extended affine Weyl group of G. It contains the f -twisted

affine Weyl group Waff(g, f ) which is generated by affine reflections in t. Regular weights are those
not fixed by any affine reflection: see §10.4 and §A.9.

Proof of (7.8). The quotient spaces f T
/

N( f ) and f G1
/

G( f ) are isomorphic under ω (Lemma 7.5).
We shall show that ω∗ ◦ω∗ is the identity on small neighbourhoods of conjugacy classes: a Mayer-
Vietoris argument then implies that the map is a global isomorphism. However, Kτ

N( f )( f T) is
spanned by classes induced from single orbits (Prop. 6.12). Their ω∗-images are fixed by ω∗ ◦ω∗,
so the theorem follows.

We need a local model for the Weyl map. We work near f , which was arbitrary in QT. Because
T contains regular elements, N f := N ∩ G f is the normaliser of T in G f . Now, the translate
f · exp(g f ) is a local slice for G1-conjugation near f , while f · exp(t) is one for T-conjugation in QT.
Therefore, a local, G f -equivariant model for ω is the Dirac induction map of §4.12,

G f ×N f t→ g f , (7.12)

and our claim reduces to Proposition 4.13.

Proof of (7.10). We use the construction (6.12) of K-classes from single conjugacy classes. Let f ∈
QT and observe, from f T ∼= f · t/Π and Lemma 7.5, that the Weyl group of G f is identified
with the stabiliser in We

aff of the associated weight. Singular weights are then fixed by the Weyl
reflection in some sl2 centralising f , and their K-classes are killed by the local induction (7.12).
Near a regular f , on the other hand, the local model for ω is an isomorphism, so regular weights
contribute non-zero generators in Kτ

G(G).

IV Loop groups and admissible representations

In this chapter, we summarise some basic facts about loop groups, twisted loop groups and their
Lie algebras, as well as the classification of admissible representations in terms of the action on
affine regular weights of the extended affine Weyl group. The key result, Thm. 10.2, combines the
theorem of the lowest weight with Mackey’s irreducibility criterion; while it is certainly known, it
does not seem to appear in the literature in this form. (See, however, [TL] for some of the simple
groups).

We need to distinguish between representations of the polynomial loop algebras and their
Hilbert space completions, and we convene to mark uncompleted spaces by a prime.

8. Refresher on affine algebras

(8.1) Affine algebras. We use the notations of §4; in particular, g is now simple. The Fourier polyno-
mial loop algebra L′gC has the Fourier basis ξa(m) = zmξa. Its basic central extension L̃′g := iRK⊕ L′g,
with central generator K, is defined by the 2-cocycle sending ξ ∧ η ∈ Λ2L′g to K · Resz=0〈dξ|η〉.
The affine Lie algebra L̂′g = L̃′g⊕ iRE arises by adjoining a new element iE, where the energy E
satisfies [E, K] = 0 and [E, ξ(n)] = nξ(n), for any ξ ∈ g. Unlike L̃′g, L̂′g carries an ad-invariant
bilinear form, extending the basic one on g:

〈k1K + ξ1 + e1E | k2K + ξ2 + e2E〉 7→ 1
2π

∫ 2π

0
〈ξ1(t)|ξ2(t)〉dt + k1e2 + k2e1. (8.2)
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(8.3) Lowest-weight modules. A projective representation of L′g has level k if it extends to a strict
representation of L̃′g in which K acts as the scalar k. This means that we can choose the action
Ra(m) of ξa(m) so that

[Ra(m), Rb(n)] = f c
abRc(m + n) + kmδabδm,−n.

Call h := iRK ⊕ t⊕ iRE a Cartan sub-algebra of L̂′g, and let N :=
⊕

n>0 zngC ⊕ n ⊂ L′gC. A lowest
weight vector in an L̂′g-module H′ is an h-eigenvector killed by the complex conjugate Lie algebra
N. Call H′ a lowest weight module, with lowest weight (k,−λ, m), if it is generated by a lowest
weight vector v of that (K, t, E)-weight. The factorisation U(L̂′g) = U(N)⊗U(h)⊗U(N) shows
that H′ is generated by N from v. Defining the positive alcove a ⊂ t as the subset of dominant
elements ξ satisfying θ(ξ) ≤ 1, we have the following:

8.4 Proposition. In a (k,−λ, m)-lowest-weight module, the weight (k, ω, n) of any other h-eigenvector
satisfies n−m ∈ Z and (ω + λ) (ξ) + n > m, for all ξ inside a.

Proof. All weights of N verify these conditions, with λ, m = 0.

(8.5) Integrable modules. A lowest-weight module is integrable if the action exponentiates to the
associated simply connected loop group. We are dealing with infinite-dimensional spaces, so a
precise definition is a bit delicate; but there are some easy equivalent Lie algebra criteria: for
instance, it suffices that the action should exponentiate on all root sl2-subgroups, [K, III], [PS,
VII]. Integrable representations are unitarisable, completely reducible, and the irreducible ones are
parametrised by their lowest weights (k,−λ, m), in which k must be a non-negative integer and λ
a dominant T-weight satisfying λ · θ ≤ k in the basic inner product. These weights correspond to
points of the scaled alcove k · a.

(8.6) Spinors. The complex Clifford algebra Cliff(L′g∗) is generated by the odd elements {ψa(m)}
dual to {ξa(m)}, satisfying

ψa(m)ψb(n) + ψb(n)ψa(m) = 2δabδm−n.

Choose an irreducible, Z/2-graded, positive energy module S′ of Cliff(L′g∗). As a vector space,
this can be identified with the graded tensor product S(0)⊗Λ• (zgC[z]), for an irreducible, graded
spin module S(0) of Cliff(g∗). S′ carries a hermitian metric, in which ψa(n)∗ = ψa(−n); so ψ(µ) is
self-adjoint for µ ∈ L′g∗. There are obvious actions of g and E on S′, intertwining with Cliff(L′g∗).
The lowest E-eigenvalue is 0, achieved on S(0)⊗ 1. Setting

K 7→ h∨, ξa(m) 7→ σa(m) := −1
4 ∑p+q=m f a

bc ψb(p)ψc(q) (8.7)

extends them to an action of L̂′g, with intertwining relation
[
σa(m), ψb(n)

]
= f b

caψc(m + n). One
derives (8.7) by considering the adjoint representation L′g to the orthogonal Lie algebra sores(Lg),
“restricted” as in [PS] with respect to the splitting L′gC = zgC[z]⊕ gC[z−1]. Formula (8.7) is then
the quadratic expression of the spin representation of sores in terms of Clifford generators [KS].

The following key result follows from the Kac character formula. It is part of affine algebra
lore; but see [FHT2] for a proof.

8.8 Proposition. As a representation of L̂′g, S′ is a sum of copies of the integrable irreducible representation
of level h∨ and lowest weight (−ρ). The lowest weight space, which is isomorphic to the multiplicity space,
is also the g-lowest-weight space in S(0), and is a graded, irreducible Cliff(t∗)-module.
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9. Twisted affine algebras

The loop algebras Lg have twisted versions, arising from the automorphisms of non-trivial principal
G-bundles over the circle. They are closely related to the outer automorphisms of g, and also to
the twisted simple affine algebras in [K, Tables Aff 2,3]: each entry of the latter is the universal central
extension of a twisted loop algebra, plus an outer derivation E.

(9.1) The algebra Lεg of loops in g twisted by an automorphism ε depends, up to isomorphism,
only on the conjugacy class of ε in the outer automorphism group of g. Thanks to Proposition 7.2,
we may as well assume that ε is a diagram automorphism. When g is simple, this will have order
1, 2 or 3; in general, we insist that the order r should be finite. This leads to an attractive algebraic
model for Lεg as the invariant part of a copy of Lg, based on the r-fold cover r

√
S1 of the unit circle

S1, under the Galois automorphism which rotates the cover by 2π/r and applies ε point-wise. To
find the geometric meaning of this construction, let G1 be the simply connected group with Lie
algebra g and G = Z/r nε G1. The quotient of the trivial bundle r

√
S1 × G under the action of Z/r

which rotates the circle and left-translates the fibres G is a principal G-bundle P over S1, and its
Lie algebra of gauge transformations is Lεg.

(9.2) Standard form. Let g be simple, for the rest of this section. The (smooth) twisted affine algebra
L̂εg is the invariant part of L̂g, in our Galois construction above. Its structure is described in [K,
VI, VIII]. Inherited from the ambient L̂g is a linear decomposition L̂εg = iRK⊕ Lg⊕ iRE. We now
rescale K and E to r×, resp. 1/r× their original values. Then, E is the natural generator for the
rotation of the unit (downstairs) circle, while the bilinear form (8.2) is still ad-invariant. Using the
standard connection ∇0 on P, descended from the trivial connection on r

√
S1, the 2-cocycle of the

central extension L̃εg := iRK ⊕ Lεg is again expressed as an integral over the unit circle, and the
Lie bracket takes the following form:

[ξ, η] (t) = [ξ(t), η(t)] +
K

2πi

∮
〈∇0ξ|η〉. (9.3)

(9.4) Lowest-weight modules. The rôles of t, h and N are taken over by their Galois invariants within
the ambient L′g; we denote them by underlines. The structure of weights and roots parallel the
untwisted case; the details are summarised in Appendix A. Note, however, that Corollary 9.9
below will imposes a small distinction for the weight lattice for twisted SU(2` + 1); see (A.10).

The underlined Doppelgängers for ρ, θ and a require a comment: ρ has the obvious meaning,
the half-sum of positive roots for g := gε, but θ, which cuts out the positive alcove a from the
dominant chamber of t by the relation θ(ξ) ≤ 1/r, is not the highest root of g, but rather the
highest weight of g/g. Therewith, the analogue of Proposition 8.4 holds true.

A geometric sense in which a plays tho rôle of a is the following. Let A denote the space
of smooth connections on the bundle P; the quotients A /LεG1 (by gauge transformations) and
εG1 /G1 (by conjugation) are isomorphic by the holonomy map. The classification (A.7) of twisted
conjugacy classes gives the following.

9.5 Proposition. Every smooth connection on P is a smooth gauge transform of ∇0 + ξdt, for a unique
ξ ∈ a. That is, a is a global slice for LεG: a ∼= A /LεG .

In a level k representation of L̂′εg, K acts as the scalar k. A lowest weight vector is an h-eigenvector
killed by N, and a lowest-weight module is one generated by a lowest weight vector. We call such a
module integrable if the action of all the root sl2 sub-algebras of L̂′εg is so; in that case, the module
is unitarisable, and the Lie algebra action exponentiates to one of L̂εG on the Hilbert space com-
pletion. Integrable representations are semi-simple, and the irreducible ones are parametrised by
their level k and their lowest weight (k,−λ), in which λ is dominant and satisfies θ · λ ≤ k/r.
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(9.6) The Clifford algebra. A basis for L̂′εgC suited to calculations arises from a complex orthonormal
ε-eigen-basis {ξa} of gC, so chosen that the indexing set carries an involution a↔ ā with ξ ā = −ξ∗a .
If ε(a) ∈ Z/r corresponds to the ε-eigenvalue of ξa, then {ξa(m)} forms a basis of g, as m + ε(a)/r
ranges over Z. Raising and lowering indexes involves a bar; for instance, the relations in the
complex Clifford algebra of L′εg∗ are

[
ψa(m), ψb(n)

]
= 2δab · δm−n.

A positive energy, graded spin module S′ can be identified, as a vector space, with S(0) ⊗
Λ• (N), for a graded spin module S(0) of Cliff(g∗). As in (8.7), the obvious actions of g and E
extend to a lowest-weight representation of L̂′εg, with a bar in the raised index a, but, remarkably
enough, with the same h∨, independently of ε. As in Proposition 8.8, the representation can be
identified using the Kac character formula; its lowest-weight space is the lowest g-weight space in
S(0), has pure weight (−ρ) and is a graded irreducible Cliff(t∗)-module.

(9.7) The loop group. The extensions in §8.1 and (9.3) are so normalised as to generate all central
extensions of LG by the circle group T. Call LεG1 the twisted loop group of G1.

9.8 Proposition. L̃εg is the Lie algebra of a basic central extension L̃εG of LεG: the central circle is
parametrised by

{
zK
∣∣ |z| = 1

}
, and its Chern class generates H2 (LεG1; Z) = Z.

Proof. The untwisted case is handled in [PS], so we focus on r > 1. Being the space of sections of a
G1-bundle over S1, LεG1 is connected and simply connected. Further, π2LεG1 = H1 (S1; π3G1

)
=

Z, and Hurewicz gives us H2(LεG1; Z) = Z. Since π2LG1 = H1( r
√

S1; π3G1), the restriction
H2(LG1) → H2(LεG1) has index r. Our extension of LεG1 will be the r-th root of the restriction
of L̃G1, the basic extension of the ambient, untwisted loop group. Having fixed the cocycle (9.3),
the obstructions to existence and uniqueness of this root are topological, living in H2 and H1 of
LεG1 with Z/r-coefficients, respectively; and they vanish as seen. Finally, we have a semi-direct
decomposition LεG ∼= Z/r n LεG1, and the ε-action on LεG1 preserves the cocycle (9.3), so it
lifts to an automorphism action on the central extension (again, by vanishing of the topological
obstructions). We let L̃εG = Z/r nε LεG1.

9.9 Corollary. The basic extension L̃εG restricts trivially to the constant subgroup Gε
1, except when G1 =

SU(2` + 1) and r = 2, in which case Gε
1 = SO(2` + 1), and we obtain the Spinc-extension.

Proof. The flag variety LεG1/Gε
1 is simply connected, with no H3. (This follows, for instance,

from its Bruhat stratification by even-dimensional cells.) The Leray sequence for the fibre bundle
LεG1 � LεG1/Gε

1 shows that H2(LεG1) surjects onto H2(Gε
1). However, Gε

1 is simply connected,
save in the cases listed, whence the result.

10. Representations of L f G

We now classify the admissible representations of the loop groups at levels τ − σ for which τ is
regular, in terms of the affine Weyl action on regular weights.

(10.1) Notational refresher. Let f be an element of the quasi-torus QT and call L f G is the f -twisted
smooth loop group of G (§1.5), τ a regular central extension and σ the extension defined by the
spin module S of L f g

∗ (§1.6). Gradings are incorporated into our twistings. The extended affine
Weyl group We

aff = π0L f N acts on Λτ by conjugating the central extension of T, and a tautological
twisting τ′ is defined for this action, wherein each τ-affine weight defines a T-central extension of
its stabiliser in We

aff (§6.10). We now restate Theorem 4 without Clifford algebras; it is the lowest-
weight classification of integrable representations of affine Lie algebras, enhanced to track the
action of the components of L f G.

10.2 Theorem. (i) The category of admissible representations of L f G of level τ− σ is equivalent to that of
finite-dimensional, We

aff-equivariant, τ′ − σ(t)-twisted vector bundles over Λτ
reg.
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(ii) The K-groups of graded admissible representations are naturally isomorphic to the twisted equivariant
K-theories Kτ′−σ(t)+∗

We
aff

(Λτ
reg).

Briefly, the equivalence in part (i) arises as follows. A regular weight µ defines a polarisation of
L f g, which selects, for each admissible representation H, a lowest-weight space in H ⊗ S with
respect to L f G n Cliff(L f g

∗). The (−µ)-eigen-component under T of this lowest weight-space is a
Cliff(t)-module, and factoring out the spinors on t gives the fibre of our vector bundle at µ ∈ Λτ.
The reader may wish to consult the simple Example 10.9 at the end of this section, where G = N.

The inverse equivalence arises “morally” from Dirac induction. Each µ ∈ Λτ
reg determines a

regular co-adjoint orbit Oµ ⊂ L f (g∗)τ, over which a twisted representation of the We
aff-stabiliser

defines a (τ− σ(t))-twisted, L f G-equivariant vector bundle. The Dirac index of this bundle along
Oµ, coupled to the highest-weight spinors, is the desired representation of L f G. Its level (τ − σ)
arises from the shift by the level σ(t)− σ of the highest-weight spinors on L f g/t.

Dirac induction in infinite dimensions is only a heuristic notion, but can be realised in this case
by the Borel-Weil construction, as a space of holomorphic sections [PS]. We will review that in §16,
where it is needed, but we will make no use of it this section.

Proving (10.2) requires some preparation. Split g into its centre z and derived sub-algebra g′.

10.3 Proposition. L f g
′ splits canonically into a sum of simple, possibly twisted loop algebras. Central

extensions of L f g are sums of extensions of L f z and of the simple summands.

Proof. In the decomposition of g′ into simple ideals, f -conjugation permutes isomorphic factors.
To a cycle C of length `(C) in this permutation, we assign one copy of the underlying simple
summand g(C) and the automorphism ε(C) := Ad( f )`. This is a diagram automorphism of g(C),
whose fixed-point sub-algebra is isomorphic to that of Ad( f ) on the summand g(C)⊕` in g′. Then,
L f g

′ is isomorphic to the sum of loop algebras Lε(C)g(C), with the loops parametrised by the `(C)-
fold cover of the unit circle. The splitting arises from the eigenspace decomposition of Ad( f )
on g(C)⊕`. As the summands are simple ideals, uniqueness is clear. Finally, the splitting of the
extension follows from the absence of one-dimensional characters of the simple summands.

(10.4) More on We
aff. The proposition splits t into z := z f and the sum of the Cartan sub-algebras

t(C). Call τ · a ∈ t the product of z and the positive alcoves (§8.3, §9.2) in the t(C), scaled by the
simple components of the level [τ], and let τ · a∗ be its counterpart in t∗ in the basic inner product
on g′. Reflection about the walls of τ · a∗ generate a normal subgroup Waff(g, f ) ⊂ We

aff, under
whose action the transforms of the alcove are distinct and tessellate t∗ (A.5). The two groups
agree when G is simply connected, but in general we have an exact sequence

1→Waff(g, f )→We
aff → π := π0L f G → 1; (10.5)

note that the sequence is split by the inclusion of π in We
aff as the stabiliser of τ · a.

Regular are those weights not lying on any alcove wall. The alcoves correspond to positive
root systems on L f g which are conjugate to the standard one (§9.4), the simple roots being the
outward normals to the walls. The positive root spaces span a polarisation of L f g

′; the various
polarisations, plus the original one on L f z, are conjugate under Γ f N ⊂ L f G, so they define the
same class of admissible representations.

(10.6) Mackey decomposition in K-theory. Let H be a group, M a normal subgroup, υ a central exten-
sion of H. Conjugation leads to an action of H/M on isomorphism classes of υ-representations of
M. Let Y be a family of isomorphism classes, satisfying the conditions

(i) Y is stable under H/M;
(ii) Every point in Y has finite stabiliser in H/M;
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(iii) The M-automorphisms of any representation in Y are scalars.

There is a tautological projective vector bundle PR over Y, whose fibre PRy at y ∈ Y is the projec-
tive space on a representation of isomorphism type y. Its uniqueness up to canonical isomorphism,
and hence H-equivariance, follow from condition (iii). The bundle defines a T-central extension
of the action groupoid of Hυ on Y. This central extension is split over Mυ, so dividing out by the
latter gives a central extension, or twisting, υ′ for the H/M-action on Y.

Call an H-representation Y-admissible if its restriction to M is a finite-multiplicity sum of terms
of type in Y, with only finitely many H/M-orbit types. For instance, this includes all induced
representations IndK

M(Ry). The same construction as in Lemma 5.2 establishes the following:

10.7 Proposition. The category of Y-admissible representations of H is equivalent to that of υ′-twisted,
H/M-equivariant vector bundles over Y, supported on finitely many orbits.

In this equivalence, a M-representation H is sent to the bundle whose fibre at y is HomM(Ry, H).
Conversely, to a bundle over Y we associate its space of sections. The relation to Construction
5.1 can be made explicit by choosing a representation H of Hυ containing all elements of Y. The
projective bundle PHomM(R; H) over Y gives a model for the twisting υ′ of the H/M-action.

Proof of (10.2). The unitary lowest-weight representations of the Lie algebra correspond to the ad-
missible ones of the simply connected cover of the identity component (L f G)1. For the simple
summands, integrable representations are classified by lowest-weights [K]. Analytic regularity of
τ on the centre L f z ∼= z⊕ L f z

/
z means that the second summand has a unique irreducible lowest-

weight representation. Unitary irreducibles of z are labelled by the points of the τ-affine dual
space. Descent of representations to (L f G)1 is controlled by an integrality constraint imposed by
T: parametrising the admissible irreducibles of (L f G)1 by their lowest weights (−λ), the shifted
weights (λ + ρ) range over Λτ

reg+ := Λτ
reg ∩ τ · a∗.

As We
aff(g, f ) acts freely on Λτ

reg, and the orbits are in bijection with the points in Λτ
reg+, we get

an identification
Kτ′−σ(t)

We
aff

(Λτ
reg) = Kτ′−σ(t)

π (Λτ
reg+). (10.8)

We apply Proposition 10.7 to H = L f G, M = (L f G)1, υ = τ − σ, Y = Λτ
reg+. The actions of π

described in §10.1 and §10.7 do match, because the (sign-reversed) lowest weight (σ, ρ) of S is
π-invariant. To conclude the proof, it remains to identify the π-twistings υ′ and τ′ − σ(t).

The subgroup of Ne
aff lying over π preserves the lowest-weight space in any υ-representation H

of L f G, and so the projective action of π on the resulting lowest-weight bundle over Y represents
υ′. Similarly, a model for τ′ arises from the action of π on the lowest-weight space in H ⊗ S,
distributed over the (sign-reversed) eigenvalues in Λτ

reg+. The second bundles differs from the
first by a factor of S(t), and this represents the twisting σ(t).

(10.9) Example: G = N. Let V := L f t 	 t and L f N ∼= Ne
aff n exp(V), as in §2.3. Regularity of

τ confines us to sums of Heisenberg extensions of V and topologically regular extensions Γ f Nτ.
The lowest-weight module F of exp(V) carries a (projective) intertwining action of π0Ne

aff. An
admissible representation H of L f N factors then as F⊗HomV(F; H), where the second factor is
(the `2 completion of) a weight module of Ne

aff, which means that it is T-semi-simple, of finite type.
Our classification now becomes the following, more precise

10.10 Proposition. Global sections give an equivalence from the category of We
aff-equivariant, τ′-twisted

vector bundles on Λτ with that of weight τ-modules of Ne
aff.

It is understood here that Tτ acts with weight λ on the fibre at λ ∈ Λτ. The proposition follows
directly from Prop. 10.7. Weight modules split into irreducibles, which are induced from stabilisers
of single weights.
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V From representations to K-theory

To an admissible representation H of LG at fixed level τ − σ, we assign a family of Fredholm
operators parametrised by an affine copy of Lg∗, equivariant for the affine action of the loop group
LG at the shifted level τ, defined in (§12). The underlying space of the family is H⊗ S, and the
operator family is the analogue of the one in §4, but is based on the Dirac-Ramond operator. We
recall this operator in §11, and reproduce the calculation [L, T] of its Laplacian, which we extend
to twisted algebras. Our family defines an LG-equivariant twisted K-theory class over Lg∗, which
we identify, when H is irreducible, with the Thom push-forward of the natural line bundle on a
single, integral co-adjoint orbit. The passage from representation to orbit and line bundle is an
inverse of Kirillov’s quantisation of co-adjoint orbits. Finally, the affine copy of Lg∗ carrying our
family can be identified with the space of g-connections over the circle with the gauge action,
leading to an interpretation of our family as a cocycle for Kτ

G(G).

11. The affine Dirac operator and its square

Let g be simple and let H′ be a lowest weight module for L̂′g, with lowest weight (k,−λ, 0).
Consider the following formally skew-adjoint operator on H′ ⊗ S′:

D/ = D/0 := Ra(m)⊗ ψa(−m) +
1
3
· σa(m)ψa(−m). (11.1)

This is known to physicists as the Dirac-Ramond operator [M]; in the mathematical literature,
it may have been first considered by Taubes [T], and was more recently studied in detail by
Landweber [L], based on Kostant’s compact group analogue. Denote by Ta(m) the total action
Ra(m) + σa(m) of ξa(m) on H′ ⊗ S′, and let k∨ := k + h∨.

11.2 Proposition.
[
D/, ψb(n)

]
= 2Tb(n), [D/, Tb(n)] = −nk∨ · ψb(n).

We postpone the proof for a moment and explore the consequences. Clearly, the commutation
action of the Dirac Laplacian D/2 on the T• and the ψ agrees with that of −2k∨E. Normalise the
total energy operator E on H′ ⊗ S′ to make it vanish on its lowest eigenspace H(0)⊗ S(0). This
last space is D/-invariant, and the only terms in (11.1) to survive on it are those with m = 0. These
sum to the Dirac operator for g, acting on its representation H(0). As we saw in §4, the latter
squares to−(λ + ρ)2. Since H′⊗ S′ is generated by the actions of the T• and the ψ on H(0)⊗ S(0),
the following formula for the Dirac Laplacian results:

D/2 = −2k∨E− (λ + ρ)2 . (11.3)

In particular, D/ is invertible, with discrete, finite multiplicity spectrum.

11.4 Remark. Because the σ are expressible in terms of the ψ, the Dirac operator (11.1) is express-
ible in terms of the operators T• and ψ alone. Define the level k∨ universal enveloping algebra of
L′g, Uk∨(L′g) := U(L̃′g)/(K − k∨). Then, D/ is an odd element in a certain completion of the
“semi-direct tensor product” of Cliff(L′g∗) by Uk∨(L′g), acting on Cliff via ad. (The most natu-
ral completion is that containing infinite sums of normal-ordered monomials, of bounded degree
and energy; this acts on all lowest weight modules of L′g n ψ(L′g∗).) The first equation in (11.2)
determines D/ uniquely, because no odd elements of the completed algebra commute with all the
ψ. However, a definite lifting T• of Lg into Uk∨(Lg) has been chosen at this point. This choice will
show up more clearly in the next section, where we consider the family of D/’s parametrised by all
possible linear splittings of the central extension L̃g (cf. also §13.3).
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Proof of (11.2). The first identity follows by adding the two lines below (in which summation over
m ∈ Z is implied, in addition to the Einstein convention):[

Ra(m)⊗ ψa(−m), ψb(−n)
]

= 2Rb(−n),[
σa(m)ψa(−m), ψb(−n)

]
= 2σb(−n) + f b

acψc(m− n)ψa(−m) = 6σb(−n).

The second identity in (11.2) follows from the first. Indeed:

[[D/, Tb(n)] , ψc(p)] = [D/, [Tb(n), ψc(p)]]− [Tb(n), [D/, ψc(p)]]

= f c
db

[
D/, ψd(p + n)

]
− 2 [Tb(n), Tc(p)]

= 2 f c
dbTd(p + n)− 2 f d

bcTd(p + n)− 2nk∨ · δbcδn+p

= −2nk∨ · δbcδn+p

= −nk∨
[
ψb(n), ψc(p)

]
,

whence we conclude that the odd operator [D/, Tb(n)] + nk∨ψb(n) commutes with all the ψ; hence
it is zero, as explained in Remark (11.4).

(11.5) The twisted-affine case. With the same notation and the same definition (11.1) of D/, we have[
D/, ψb(n)

]
= 2Tb̄(n), [D/, Tb(n)] = −nk∨ · ψb̄(n); (11.6)

and we obtain, as before, the formula for the Dirac Laplacian:

D/2
0 = −2k∨E− (λ + ρ)2. (11.7)

(11.8) The affine Dirac operator. The relation between the finite and affine Dirac Laplacians, (4.6)
and (11.3), becomes more transparent if we use spinors on the full Kac-Moody algebra. Let L̂g∗ =
iRK∗⊕ Lg∗⊕ iRδ, where K∗ (which is denoted Λ in [K]) is dual to K and δ to E. Identifying it with
L̂g by the bilinear form (8.2), the co-adjoint action of ξ̂ = (k, ξ, e) on L̂g∗ becomes

K∗ 7→ i dξ/dt = − [E, ξ] , δ 7→ 0,

µ ∈ Lg∗ 7→ ad∨ξ(t)µ(t) + e · µ′(t) + iδ ·
∮

µξ ′dt. (11.9)

The Spin module for Cliff(L̂g∗) is Ŝ = S⊕ ψK∗ · S. The corresponding Dirac operator,

D̂/ := D/ + Eψδ + KψK∗ ,

commutes with the (new) total action T• of L̂g and satisfies the simpler formula D̂/2 = − (λ + ρ)2,
whose verification we leave to the reader.

12. The Dirac family on a simple affine algebra

Assume now the representation H′ of L̂′g to be integrable; it is then unitarisable, and its Hilbert
space completion H carries an action of the smooth loop group LG. Furthermore, we must have
k∨ > 0.
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(12.1) The level hyperplanes. The co-adjoint action (11.9) preserves the fixed-level hyperplanes ik∨K∗+
L̃g∗ ⊂ L̂g∗. Ignoring δ leads to the affine action at level k∨ on Lg∗. The correspondence

ik∨K∗ + µ ↔ d/dt + µ/k∨

identifies this action with the gauge action on the space A of g-valued connections on the circle.

12.2 Proposition. The assignment µ 7→ D/µ := D/ + iψ(µ), from Lg∗ to End(H′ ⊗ S′), intertwines the
affine action of L̂g at level k∨ with the commutator action.

Proof.
[
T(ξ), D/µ

]
= k∨ψ ([E, ξ]) + i [σ(ξ), ψ(µ)] = iψ

(
−k∨dξ/dt + ad∨ξ (µ)

)
, as desired.

(12.3) The Laplacian. Formulae (11.2) and (11.3) give

D/2
µ = D/2 + i [D/, ψ(µ)]− ψ(µ)2

= −2k∨E− (λ + ρ)2 + 2i〈T|µ〉 − µ2 (12.4)
= −2

(
k∨E− i〈T |µ〉+ 〈λ + ρ |µ〉

)
− (λ + ρ− µ)2.

When µ ∈ t∗, we can view this formula as a generalisation of (11.3), as follows. The first term in
(12.4) is −2k∨Eµ, with a modified energy operator

Eµ = E− i〈T |µ/k∨〉+ 〈λ + ρ |µ/k∨〉.

This is associated to the connection d/dt + µ/k∨ in the same way that E is associated to the trivial
connection: they intertwine correctly with the action of Lg. Furthermore, Eµ is additively nor-
malised so as to vanish on the −(λ + ρ)-weight space within H(0)⊗ S(0). As we are about to see,
when µ/k∨ ∈ a∗, that weight space is the lowest eigenspace for the Dirac Laplacian on H⊗ S.

(12.5) The Dirac kernels. To study a general D/µ, we conjugate by a suitable loop group element to
bring µ into k∨a∗. As D/µ now commutes with t and E, we can evaluate (12.4) on a weight space of
type (ω, n), where T(µ) = i 〈ω|µ〉, and obtain

D/2
µ = −2

(
k∨n + 〈ω + λ + ρ|µ〉

)
− (λ + ρ− µ)2 (12.6)

Now, a weight of H⊗ S splits as (ω, n) = (ω1, n2) + (ω2, n2), into weights of H and S. Proposition
(8.4) asserts that (ωi + λ) · µ + k∨ni ≥ 0,with equality only if µ/k∨ is on the boundary of a∗, or
else if ω = −(λ + ρ) and n = 0. But then, (12.6) can only vanish if, additionally, µ = λ + ρ. Since
that lies in the interior of k∨a∗, we obtain the following.

12.7 Theorem. The kernel of D/µ is nil, unless µ is in the affine co-adjoint orbit of (λ + ρ) at level k∨. If
so, the transformation mapping µ to λ + ρ identifies ker D/µ with the −(λ + ρ)-weight space in H(0)⊗
S(0).

The last space is the product of the lowest-weight space Cv of H(0) with that of S(0); this last
weight space is a graded, irreducible Cliff(t)-module. As in finite dimensions, the more canonical
statement is that the kernels of the D/µ on the “critical” co-adjoint orbit O of λ + ρ in ik∨K∗ + Lg∗

assemble to a vector bundle isomorphic to S(N )(−λ− ρ), the normal spinor bundle twisted by
the natural line bundle on O. This vector bundle has a natural continuation to a neighbourhood
of O as the lowest eigen-bundle of D/µ. We can describe the action of D/µ there, when µ moves a
bit off O.

12.8 Theorem. Let µ ∈ O, ν ∈ Nµ a normal vector to O at µ in A. The Dirac operator D/µ+ν preserves
ker(D/µ) and acts on it as Clifford multiplication by iψ(ν).
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(12.9) Twisted K-theory class. Proposition 12.2 shows that our constructions are preserved by the
action of LG, so the Fredholm bundle

(
H⊗ S, D/µ

)
over Lg∗ defines a twisted, LG-equivariant K-

theory class supported on O. Formula (12.6) bounds the complementary spectrum of D/µ away
from zero, so the embedding of the lowest eigenbundle induces an equivalence of twisted, LG-
equivariant K-theory classes in some neighbourhood of O. Proposition 12.8 identifies the K-class
with the Thom push-forward of the line bundleO(−λ− ρ), from O to Lg∗. Finally, identifying the
level k∨ hyperplane in L̃g with A as in §12.1 and using the holonomy map from A to G interprets
our Dirac family as a class in Kτ

G(G), in degree dim g (mod 2).

(12.10) Twisted affine algebras. The results extend verbatim to twisted affine algebras, if we use the
presentation Lεg of §9. Let Aε be the space of smooth connections on the G-bundle of type ε and
recall the distinguished connection ∇0 of §9.2.

12.11 Proposition. (i) The identification of the affine hyperplane ik∨K∗ + Lεg
∗ ⊂ with Aε sending µ to

∇0 + µ/k∨ is equivariant for the action of Lεg.

(ii) The assignment µ 7→ D/ + iψ(µ) intertwines the affine co-adjoint and commutator actions.

(iii) Formula (12.4) for D/2
µ, and its consequences (12.7) and (12.8), carry over, with ρ replaced by ρ.

13. Arbitrary compact groups

We now extend the construction of the Dirac family, and the resulting map from representations
to twisted K-classes, to the space AP of connections on a principal bundle P over the circle, with
arbitrary compact structure group G. The Lie algebra LPg of the loop group LPG of gauge transfor-
mations splits into a sum of abelian and simple loop algebras, and the central extension preserves
the splitting (Prop. 10.3). To assemble the families for the individual summands, we must still
discuss the abelian case and settle their equivariance under the non-trivial components of LPG.

(13.1) The Abelian case. Assume, as in Def. 2.4, that the the central extension L̃z takes the form
[ξ, η] = b(Sξ, η) · K, for the L2 pairing in an inner product on the abelian Lie algebra z. Letting
L̂z := iRK ⊕ Lz⊕ iRS, the discussion of the Dirac family in §11 and §12 carries over, with a = z,
Lz acting trivially on the spin module S, and ρ and h∨ null. For instance, D/ := Ra ⊗ ψa, summing
over a basis of Lz, and relations affdiracrels and (11.6) are clear in Uk(Lz)⊗Cliff (Remark 11.4).

An admissible irreducible representation of L̂z has the form F⊗C−λ, for the Fock representa-
tion F of L̂z/z and a τ-affine weight λ of z, and we obtain

D/2 = −2S− λ2, D/2
µ = −2S− (λ− µ)2.

The kernel is identified as before: it is supported on the affine subspace iK∗ + λ + Lz∗ 	 z∗ of
L̃z∗. This is a single co-adjoint orbit of the identity component of LZ, and the family represents
the Thom push-forward of the LZ-equivariant line bundle O(−λ), from that orbit to the ambient
space.

(13.2) Spectral flow over Z. The positive polarisation U ⊂ LzC	 zC of §2.8 leads to vector space iden-
tifications S′ ∼= S(0)⊗Λ•(U) and F′ ∼= Sym(U). Decomposing D/µ = D/z

µ + D/Lz/z into zero-modes
and U-modes, we recognise in the first term is the Dirac family of §3, lifted to z∗ and restricted to
the single summand C−λ ⊂ F[−λ]; whereas D/Lz/z = ∂ + ∂∗, for the Koszul differential

∂ : Symp(U)⊗Λq(U)→ Symp+1(U)⊗Λq−1(U).

Thus, D/µ is quasi-isomorphic to the finite-dimensional family (C−λ, D/z
µ) over z∗. The induced

LZ-module will have the form F′ ⊗ F[−λ], and dropping the factor Λ•(U)⊗ F′, which is equivalent
to C, recovers our spectral flow family of §3.3.
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(13.3) Characterisation of D/µ. Proposition 12.2 ensures the equivariance of our Dirac family under
the connected part of the loop group. When G is not simply connected, we must extend this
to the other components; in particular, this is needed for tori. This extension is accomplished
by an intrinsic characterisation of D/µ. We first restate the Dirac commutator relations without
coordinates: [

D/µ, ψ(ν)
]

= 2〈T | ν〉+ 2i〈µ | ν〉
[
D/µ, T(ξ)

]
= ψ

(
ad∨ξ (k∨K∗ − iµ)

)
,

where the bracket in the first equation is contraction in the bilinear form (8.2). Observe now that
the right-hand side of first formula expresses the total action of ν on H ⊗ S, in the lifting of LPg

to L̃Pg defined by the line through (ik∨K∗ + µ) in L̃Pg∗. In the second formula, we have used the
co-adjoint action of §11.8. As explained in Remark 11.4, the first relation uniquely determines D/µ,
and we conclude

13.4 Proposition. The assignment µ 7→ D/µ is equivariant under all compatible automorphisms of LPg,
H and S which preserve the bilinear form on LPg.

(13.5) Coupling to representations. The Dirac family D/µ lives naturally on an affine copy of LPg∗,
namely the hyperplane over i ∈ iR in the projection (LPg∗)τ → iR, dual to the central extension
(2.6). We transport it toAP by identifying the two as LPG-affine spaces. For the simple factors, this
identification is described in §12; but on the abelian part, there is an ambiguity: we can translate
by the Lie algebra of the centre of LPG. Under the holonomy map from connections to conjugacy
classes, this ambiguity matches the one encountered in (6.13.ii), where we identified τ · a∗ with
the space of holonomies. Note, however, that the regularity and singularity of the affine weights
matches the one of the underlying (twisted) conjugacy classes in G, irrespective of the chosen
identification.

Coupling D/µ to graded, admissible representations results in twisted K-classes on AP, equiv-
ariant under LPG. This is also an Ad-equivariant twisted K-classes over G, supported on the
components which carry the holonomies of P.

13.6 Proposition. The isomorphism of Theorem 3 is induced by the Dirac family map, from admissible
representations to K-classes.

Proof. This follows by comparing the Dirac kernels to the classification of irreducibles by their
lowest-weight spaces in §10, and again with the basis of Kτ

G(G) described in Proposition 6.12.

VI Variations and Complements

In this chapter we exploit the correspondence between representations and K-classes to produce
analogues of known representation-theoretic constructions in purely topological terms.

14. Semi-infinite cohomology

In this section, we give alternative formulae (14.3), (14.10) for the Dirac operator D/. With the Lie
algebra cohomology results of Bott [B] and Kostant [K1] and with Garland’s loop group analogues
[G], the new formulae explain the magical appearance of the kernel on the correct orbit. The
relative Dirac operators of [K2] and [L] allow us to interpret the morphisms ω∗ and ω∗ of §7 in
terms of well-known constructions for affine algebras, namely semi-infinite cohomology and semi-
infinite induction [FF].

We work here with polynomial loop algebras and lowest-weight modules; for simplicity, we
omit f -twist, underlines and the primes from the notation. We shall also use ad∨ to denote the
co-adjoint action of a Lie algebra on its dual, reserving the “∗” for hermitian adjoints.
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(14.1) Lie algebra cohomology. The triangular decomposition LgC = N ⊕ tC ⊕ N factors the spin
module as S = S(t∗)⊗Λ•N∗. The action of N on a lowest-weight module H leads to a Chevalley
differential on the Lie algebra cohomology complex,

∂̄ : H⊗ΛkN
∗ → H⊗Λk+1N

∗,

∂̄ = R−α ⊗ ψα +
1
2

ψα · ad∨−α

(14.2)

where we have used a root basis of N and its dual basis ψα of Clifford generators. Let ∂̄∗ be the her-
mitian adjoint of ∂̄, and denote by D/t

−ρ the t-Dirac operator with coefficients in the representation
H⊗Λ•N∗ ⊗C−ρ of T.

14.3 Proposition. D/ = ∂̄ + ∂̄∗ + D/t
−ρ; moreover, D/t

−ρ commutes with ∂̄ + ∂̄∗.

Proof. Commutation is obvious. It is also clear that the R-terms on the two sides agree; so, it
remains to compare the Dirac (σψ)/3-term in (11.1) with ψ · ad∨/2 + (ψ · ad∨)∗/2, plus the ad-
term in D/t. Now, all three terms have cubic expressions in the Clifford generators, and we will
check their agreement. We have

1
2

ψα · ad∨−α =
1
4 ∑ α,β>0

γ<0
fαβγψαψβψγ,

1
2
(
ψα · ad∨−α

)∗ =
1
4 ∑ α,β>0

γ<0
f̄αβγψ−γψ−βψ−α.

Disregarding the order of the generators, their difference contains precisely the terms in σψ/3 in-
volving two positive roots and a negative one, respectively two negative roots and a positive one;
whereas the ad-term in D/t similarly collects the σψ/3-terms involving exactly one t∗-element.
Clearly, this accounts for all terms in σψ/3. We have thus shown that the symbols of these opera-
tors agree in (a completion of) Λ3(Lg∗).

The difference between the two must then be a linear ψ-term. However, both operators com-
mute with the maximal torus T and with the energy E; so the difference is ψ(µ), for some µ ∈ t∗C.
A quick computation gives, for ν ∈ t∗,[

∂̄, ψ(ν)
]

=
[
∂̄∗, ψ(ν)

]
= 0,[

D/t
−ρ, ψ(ν)

]
= 2T(ν) = [D/, ψ(ν)] ;

so [ψ(µ), ψ(ν)] = 0 for all ν, and it follows that µ = 0, as desired.

(14.4) The Dirac kernels. Proposition 14.3 gives a new explanation for the location of ker D/µ. If H is
irreducible with lowest weight (−λ), we have, on H⊗ΛqN

∗ ⊗ S(t∗),

ker
(
∂̄ + ∂̄∗

) ∼= Hq (N; H
)
⊗ S(t∗) =

⊕
`(w)=q

Cw(−λ−ρ)+ρ ⊗ S(t∗), (14.5)

embedded in the Lie algebra complex as harmonic co-cycles; the sum ranges over the elements
of length q in the affine Weyl group of g. If µ ∈ t∗, then D/t

µ−ρ = D/t
−ρ + iψ(µ) commutes with(

∂̄ + ∂̄∗
)
, so ker D/µ is also the kernel of D/t

µ−ρ on the space in (14.5). Clearly, the latter is non-zero

precisely when µ is one of the w(λ + ρ); otherwise, it follows that the highest eigenvalue of D/2
µ is

the negative squared distance to the nearest such point, in agreement with §12.3.
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(14.6) Semi-infinite cohomology. A similar construction applies to a decomposition of a rather dif-
ferent kind. Splitting LgC = Ln⊕ LtC ⊕ Ln̄ gives a factorisation

S(Lg∗) = S(Lt∗)⊗Λ∞/2+•(Ln∗),

where the “semi-infinite” right-most factor is the exterior algebra on the non-negative Fourier
modes in n∗ and the duals of the negative ones, the latter carrying degree (−1) [FGZ, FF]. The
analogue of formula 14.2 defines a differential ∂ for semi-infinite Lie algebra cohomology, acting
on H⊗Λ∞/2 (Ln∗). With the same H, the semi-infinite cohomology can be expressed as a sum of
positive energy Fock spaces F⊗Cµ for Lt /t , on which T acts with weight µ:

H∞/2+q (Ln; H) =
⊕

`(w)=q

F⊗Cw(−λ−ρ)+ρ. (14.7)

Because the splitting of LgC was LT-equivariant, LT act on Λ∞/2 (Ln∗); it commutes with ∂, so acts
on the cohomology; but the non-trivial components shift the degree. Passing to Euler character-
istics, we can collect terms into the irreducible representations F⊗ F[µ] of LT described in §3, and
we obtain a sum over the finite Weyl group

∑q (−1)qH∞/2+q (Ln; H) = ∑w∈W ε(w) · F⊗ F[w(−λ−ρ)+ρ]. (14.8)

In the f -twisted case, the Weyl group is replaced by the extension W̃ f of (6.6), and the F[µ] are the
irreducible τ-modules of Π× T.

(14.9) Relative Dirac operator. Define D/Lg/Lt := ∂ + ∂∗; its index is given by (14.8).

14.10 Proposition. D/ = D/Lt + D/Lg/Lt, and all three operators commute.

The proof is very similar to the one of Prop. 14.3; see [L] for more help. Similarly, we have D/Lg
µ =

D/Lt
µ + D/Lg/Lt, and the three operators commute when µ ∈ Lt∗. As in §14.4, it follows that the

restriction to Lt∗ of our Dirac family on H⊗ S is stably equivalent to D/Lt
µ , acting on the alternating

sum of spaces in (14.8). Comparing this with the construction (6.12) of K-classes from conjugacy
classes and with the local model of the Weyl map (7.7), we obtain the following

14.11 Theorem. Under the Dirac family construction, the map from Rτ−σ(LG) to Rτ(LT) defined by the
semi-infinite Ln-Euler characteristic corresponds to the Weyl restriction ω∗ : Kτ

G(G)→ Kτ
T(T).

14.12 Remark. (i) In the twisted case, this applies to the restriction ω∗ : Kτ
G( f )( f G1)→ Kτ

T( f T).
(ii) We have used LT for simplicity, but the result applies to LN, which preserves the relative Dirac
D/Lg/Lt (though not the semi-infinite differential ∂). We can then detect the restriction to Kτ

N( f )( f T).

15. Loop rotation, energy and the Kac numerator

In this section, we study a rotation-equivariant version of Kτ
G(G) and relate it to the positive energy

representations of the loop groups.

(15.1) Conditions for rotation-equivariance. The admissible loop group representations of greatest
interest admit a circle action intertwining with the loop rotations (§1.9). This will be the case iff
the following two conditions are met:

(i) The loop rotation action lifts to the central extension LGτ,
(ii) The polarisation used in defining admissibility is rotation-invariant (§2.9).
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A lifting in (i) defines a semi-direct product T n LGτ. Subject to condition (ii), the Borel-Weil
construction of admissible representations [PS] shows that they all carry actions of the identity
component of this product, and the T-action is determined up to an overall shift on each irre-
ducible. The rotation action can be extended to the entire loop group as in the discussion of §10,
leading to the same classification of irreducibles, but with the extra choice of normalisation for the
circle action.

With respect to condition (i), it is convenient to allow fractional circle actions: that is, we allow
the circle of loop rotations to be replaced by some finite cover. A lifting of the rotation action to
LGτ refines the level [τ] to a class in H3 (B(T n LG)). The obstruction to such a refinement is the
differential δ2 : H3

G(G1) → H2(BT)⊗ H2
G(G1) in the Leray sequence for the projection to BT. All

torsion obstruction vanish when T is replaced by a suitable finite cover. Rationally, H∗G(G1) is the
invariant part of H∗T(T) under the Weyl group W of G, and for the torus we have the following.

15.2 Lemma. A class in H3(T× BT) lifts to a rotation-equivariant one iff its component in H1(T)⊗ H2
T

is symmetric.

Proof. The differential δ2 vanishes on the H∗(T) factor, and is determined its effect on H2
T: this is

mapped isomorphically onto H2(BT)⊗H1(T). On H3(T× BT), this becomes the anti-symmetrisation
map H1(T)⊗ H2

T → H2(T) = Λ2H1(T).

15.3 Remark. For semi-simple G, symmetry is ensured by Weyl invariance.

Adding loop rotations to the landscape leads to the quotient stack of the space A of smooth
connections by the action of T n LG. This is a smooth stack, with compact quotient and proper
stabiliser, but unlike the quotient stack GG of G by its own Ad-action, it cannot be presented as a
quotient of a manifold by a compact group. The K-theory of such stacks was discussed in [FHT1].
Let Λ̂τ = Λτ ⊕Zδ be the level τ slice of the affine weight lattice (A.9).

15.4 Proposition. We have isomorphisms Rτ−σ(T n LG) ∼= Kτ′−σ(t)
We

aff
(Λ̂τ) ∼= Kτ+dim g

T (GG), obtained by
tracking the loop rotation in Thm. 7.10 and in the Dirac family.

The middle group is a free RT-module, with the generator acting on Λ̂τ by δ-translation. Killing
the augmentation ideal forgets the circle action in the outer groups and δ in the middle group, and
recovers the isomorphisms in Theorems 3 and 4.

Proof. The argument is a repetition of (5.2), (6.8) and (7.10), with the extra T-action. The main
difference is that we are now dealing with the K-theories of some smooth, proper stacks, which are
no longer global quotients, but only locally so. However, the proofs of (5.2) and (7.10) proceed via
the same local step, which continues to apply, globalised using the Mayer-Vietoris principle.

(15.5) Positive energy. The natural choices for the Fredholm operator S defining the Lie algebra
cocycle in (2.4) are multiples of the derivative −id/dt; the polarisation P is then the semi-positive
Fourier part of LgC. With those choices, lowest-weight modules of Lg carry a bounded-below
energy operator E, unique up to additive normalisation, generating the intertwining loop rotation
action. If the restriction to H1(T)⊗ H2

T of [τ] is symmetric, loop rotations lift fractionally to LGτ;
and, if that same bilinear form is positive, E is bounded below on admissible τ-representations of
the group.

This generalises easily to the twisted loop groups LPG of gauge transformations of a principal
bundle P over S1. The diffeomorphisms of the bundle P which cover the loop rotation form an
extension of the rotation group T by LPG; this group replaces T n LG from the trivial bundle case.
(The extension is not too serious, any connection on P whose holonomy has finite order gives a
fractional splitting.) The topological constraint for rotation-equivariance of a extension τ is now
the symmetry of the map κτ in §6.4.
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(15.6) The Kac numerator. For the remainder of this section, we make the simplifying assumption
that G is connected, with π1G free. Positive energy representations of LG are then determined
by their restriction to the subgroup T× G of circle rotations and constant loops; moreover, loop
rotations extend to a trace-class action of the semi-group {q ∈ C×||q| < 1}. If H is irreducible
with lowest-weight (−λ), the value of its character at q ∈ C and g ∈ G is given by the Kac formula
[K]

Tr
(

qEg|H
)

=
∑µ ε(µ) · q‖µ‖2/2 · Tr

(
g|Vρ−µ

)
∆(g; q)

, (15.7)

where µ ranges over the dominant regular affine Weyl transforms of (λ + ρ) at level [τ], ε(µ) is the
signature of the transforming affine Weyl element, Vµ the G-representation with lowest weight µ,
‖µ‖2 := 〈(κτ)−1(µ)|µ〉 defined by the level [τ], and the Kac denominator for (Lg, g)

∆(g; q) = ∏
n>0

det (1− qn · ad(g))

independent of λ and τ, representing the (super)character of the spinors on Lg/g. We shall now
see how (15.7) is detected by our KT-group.

Including the identity e ∈ G defines a Gysin map

Ind : Rτ−σ(g)(T× G)→ Kτ+dim G
T (GG),

with τ on the left denoting the restricted twisting and σ(g) the Thom twist of the adjoint represen-
tation. Dualising over RT, while using the bases of irreducible representations to identify Kτ

T(GG)
with its RT-dual, leads to an RT-module map

Ind∗ : Kτ+dim G
T (GG)→ HomZ

(
Rτ−σ(g)(G); R(T)

)
;

the right-hand side is the R(T)-module of formal sums of (twisted) G-irreducibles with Laurent
polynomial coefficients. The choice of basis gives an indeterminacy by an overall power of q for
each irreducible, which must be adjusted to give an exact match in the following theorem. Let [H]
be the Kτ

T(GG)-class corresponding to H.

15.8 Theorem. Ind∗[H] is the Kac numerator in (15.7).

Proof. The theorem is a consequence of two facts. First is the relation

q‖λ+ρ‖2/2 · Ind (V−λ) = ε(µ) · q‖µ‖2/2 · Ind
(
Vρ−µ

)
, (15.9)

holding for any µ in the affine Weyl orbit of (λ + ρ). Second is the fact that, with our simplifying
assumption that G is connected with free π1, the twisted K-class Ind(V−λ) corresponds to an
irreducible representation of LGτ. (There are no affine Weyl stabilisers of regular weights).

We can check (15.9) by restriction to the maximal torus T. The Weyl denominator is the Euler
class of the inclusion T ⊂ G; multiplying by it while using the Weyl character formula converts
the Kac numerator for (Lg, g) to that of (Lt, t), and we are reduced to verifying the theorem for the
torus (with ε(µ) = 1 and without ρ-shifts, as the affine Weyl group is now the lattice π1T).

The stackA/T n LT of T-valued connections on the circle, modulo gauge transformations and
circle rotations, is equivalent to the classifying stack of a bundle of groups over the quotient space
T, with fibre T× T. The bundle of groups is described by its holonomy around loops γ ∈ π1T,
given by the automorphism

T× T 3 (q, t) 7→ (q, tqγ).

The holonomy on the associated bundle R of representation rings is qmtiλ 7→ qm+〈λ|γ〉tiλ, for any
m ∈ Z and integral weight λ : π1T → Z.
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The twisting τ defines a bundle Rτ of free rank one modules over R. (With respect to Con-
struction (5.1), Rτ is the free Z-module over the fibres of Y.) The holonomy describing Rτ must
vary from that of R by multiplication by a unit qφ(λ,γ) · tiκτ(γ). (The correct exponent κτ(γ) of t is
detected by restricting to the known case q = 1.) We claim that the only option, up to automor-
phism, is φ(λ, γ) = 〈κτ(γ)|γ〉/2, resulting in the holonomy

qm+‖λ‖2/2tiλ 7→ qm+‖λ+κτ(γ)‖2/2 · ti(λ+κτ(γ)).

Travelling now around γ shows that inductions from the characters q‖λ‖
2/2tiλ and from q‖λ+κτ(γ)‖2/2 ·

ti(λ+κτ(γ)) of T× T lead to the same twisted K-class, proving (15.9) and hence our theorem.
To check the claim, note the two relations

φ(λ + µ, γ) = φ(µ, γ),
φ(λ, γ + γ′) = φ(λ, γ) + φ(λ, γ′) + 〈κτ(γ)|γ′〉

the first, by computing the holonomy of ti(λ+µ) = tiλtiµ in two different ways (using the module
structure of Rτ) and the second, from the homomorphism condition. These imply that φ(λ, γ) =
〈κτ(γ)|γ〉/2, modulo a linear γ-term; but the latter can be absorbed by a shift tiλ 7→ ti(λ+ν) in
T-characters, representing an automorphism ofRτ.

15.10 Remark. This discussion can be generalised to twisted loop groups and their disconnected
versions. However to determine a representation uniquely, we must restrict it to a larger subgroup
of the loop group, one which meets at least every torsion component in a translate of the maximal
torus). We then expect to find an extension of the Kac character, which is due to Wendt [W].

16. Fusion with G-representations

For positive energy representations, the fusion product of conformal field theory defines an opera-
tion ∗ : R(G)⊗ Rτ(LG) → Rτ(LG). We will now recall its construction and prove its agreement
with the topologically defined R(G)-action on Kτ

G(G) by tensor product. For notational clarity,
we only write out the argument for the untwisted loop groups, the twisted result following by
judicious insertion of underlines and f -subscripts.

(16.1) Example: G1 is a torus. Recall from §2.3 that, when G = N, LN ∼= ΓN n exp(Lt	 t), where
ΓN = Ne

aff is the subgroup of geodesic loops. Evaluating geodesic loops at a point x in the circle
gives a homomorphism Ex : LN → N. If V is a finite-dimensional N-representation, the pull-back
E∗xV is an admissible LN-representation, and fusing with V is simply tensoring with E∗xV.

Note that Ex is not the “evaluation at x” homomorphism on the whole of LN; indeed, the
latter would not lead to admissible representations. Because of this, for non-abelian G1, we need
the more complicated definition that follows, essentially moving the base-point x inside the disk.

(16.2) Segal’s holomorphic induction. Let H be a positive energy admissible τ-representation of LG,
and V a G-module whose ρ-shifted highest weights lie in the alcove τ · a∗ (§10.4). Such G-modules
will be called small. Let also A be a complex annulus, with an interior base-point x. The obvious
group O(A; GC) of holomorphic maps with smooth boundary values acts on H, by restriction to
the inner boundary, on V by evaluation at x, and maps into a copy of LGC by restriction to the
outer boundary. G. Segal defines the fusion of H with V along A as the holomorphic induction

H ∗Vx := IndLGC

O(A;GC) (H⊗Vx) , (16.3)

by which we mean the space of right O(A; GC)-invariant holomorphic maps from LGC to H⊗V.
Conjecturally, this is a completion of an admissible representation.
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The rigorous implementations of this construction that we know are algebraic. The direct
product Ĥ of energy eigenspaces in H is a representation of the Laurent polynomial loop group
L′GC := GC[z, z−1]. After evaluation at z = x, L′GC also acts on V. The completion of L′GC at
z = ∞ is the group of formal Laurent loops GC((w)) (w = z−1). Its algebraic, positive energy
τ − σ-modules are completely reducible, and the irreducibles are precisely the direct sums H′ of
energy eigenspaces in irreducible admissible representations H of LG.5 Constructing the induced
representation now from algebraic functions, the following important lemma permits the subse-
quent definition.

16.4 Lemma. IndGC((w))
L′GC

(
Ĥ⊗V

)
is a finitely reducible, positive-energy representation of GC((w)).

16.5 Definition. The fusion product H ∗Vx is IndGC((w))
L′GC

(
Ĥ⊗V

)
.

Using brackets to denote the associated K-classes, the fusion is identified by the following

16.6 Theorem. In Kτ
G(G) with its topological R(G)-action, [H ∗Vx] = [H]⊗ [V].

The proof of this theorem requires some preliminary constructions.

(16.7) Borel-Weil construction. We need to review the construction of H by algebraic induction from
a Borel-like subgroup, the Iwahori subgroup, but minding the group π0LG of components. To see
the problem, recall that every representation of a connected compact Lie group is holomorphically
induced from a Borel subgroup B. However, this fails for disconnected groups, where induction
from the quasi-Borel subgroup QT · B is required instead. (QT is the quasi-torus of §7.) This is neatly
accomplished by using an old idea of Beilinson and Bernstein.

The quasi-iwahori subgroup QI ⊂ L′GC is the normaliser of N; it meets every component of
L′GC in a translate of the standard Iwahori subgroup. We can factor QI = QL n exp(N), with a
subgroup QL ⊂ (Ne

aff)C which plays the rôle of a complexified quasi-torus for the loop group. In
fact, QL = QI ∩ (Ne

aff)C. There is a Cartesian square

QL −→ (Ne
aff)C

↓ ↓
π0LG −→ We

aff ,

where the bottom horizontal arrow is the splitting of (10.5) defined by the positive alcove.
Over the full flag variety X′ := L′GC/QI , there is an algebraic vector bundle U , whose fibre at

a coset γQI is the space H′/NγH′ of co-invariants in H′, with respect to the conjugated nilpotent
Nγ := γNγ−1. (This fibre is isomorphic to the lowest-weight space for the opposite polarisation.)
Then, Ĥ is the space of algebraic sections of U over X′. A result of Kumar [Ku] ensures the
vanishing of higher cohomologies of this bundle.

16.8 Remark. (i) QI acts (projectively) on the space U := H′/NH′, which defines a projective L′GC-
vector bundle over X′; “unprojectivising” this bundle at level τ − σ results in U .
(ii) The same prescription defines U over the “thicker” flag variety X := GC((w))/QI , and its
sections there lead to the “thin” version H′ of the same representation.

(16.9) Derived induction. The fibre of U at 1 is a representation of QI which factors through QL, and
whose highest weights are in Λτ

reg+, as discussed in §10. We now study the “derived induction”
RInd from QL-modules to LG-modules, by which we mean the Euler characteristic over X of a
vector bundle associated to a general (τ − σ)-module of QL. By §10 again,

τ−σR(QL) ∼= τ′−σ(t)Kπ(Λτ),

5Experts will know that, when G is not semi-simple, these algebraic loop groups are highly non-reduced group
(ind)-schemes, and their formal part must be included in the discussion.
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with the action and twistings defined there, and we claim that RInd is the result of the direct
image map, followed by restriction to the regular part:

τ′−σ(t)Kπ(Λτ)→ τ′−σ(t)KWe
aff

(Λτ)→ τ′−σ(t)KWe
aff

(Λτ
reg). (16.10)

From §10 and the vanishing of higher cohomology, this is known for weights in Λτ
reg+. Because

We
aff
∼= π n We

aff(g) and τ · a∗ is a fundamental domain for We
aff(g), it suffices to show that RInd

is anti-symmetric under this last group and that weights on the walls of τ · a∗ induce 0. Both
statements follow from Bott’s reflection argument [B] applied to the simple affine reflections.

Proof of (16.4). QI acts on on V by evaluation at z = x; calling Vx the associated vector bundle over
X, transitivity of induction shows that

IndGC((w))
L′GC

(
Ĥ⊗V

)
∼= Γ (X;U ⊗ Vx) .

and the Lemma now follows from Theorem 4 of [T1].

Proof of (16.6). Theorem 4 of [T1] also ensures the vanishing of higher cohomologies when V is
small. We will identify H ∗Vx by deforming Vx. Scaling x 7→ 0 deforms the action of QI on Vx into
the representation V0, pulled back from the quotient map QI → QL. More precisely, any point-
wise evaluation LG → G embeds QL into N, and V0 is obtained from V under QL → N ⊂ G. The
Euler characteristic of the bundle U ⊗Vx is unchanged under deformation, because of the rigidity
of admissible representations of G((w)) (and the techniques of [T1], which reduce this to a “finite
type” problem). We conclude that

H ∗Vx ∼= RInd(U ⊗V0).

To prove the theorem, we must show that RInd : R(QL)→ Kτ
G(G) is an R(G)-module map, under

the inclusion QL ⊂ G. Factoring RInd as in (16.10), this property is clear for the second step,
restriction to Λreg, since that is nothing but the map ω∗ of §7.10. A different description makes the
same obvious for the first step, the direct image. Indeed,

τ′−σ(t)KWe
aff

(Λτ) ∼= Kτ
Ne

aff
(t), τ′−σ(t)Kπ(Λτ) ∼= Kτ

QL
(t),

as in Remark 6.9. The direct image map becomes now induction along the inclusion QL ⊂ Ne
aff,

and this is clearly a module homomorphism under the super-ring R(N) (as Ne
aff maps to N by

evaluation at any fixed point in the loop).

17. Topological Peter-Weyl theorem

We now describe a topological version of the Peter-Weyl theorem for loop groups; beyond its
entertainment value, the result can be used to confirm that the bilinear form in the Frobenius alge-
bra Kτ

G(G) of [FHT1] agrees with the natural duality pairing in the Verlinde ring, as we claimed in
[FHT3, §8]. The TFT interpretation is only available for twistings that are transgressed from BG in
a suitable sense [FHT4], but our description of the duality pairing applies to any regular twisting.

(17.1) Compact groups. One version of the Peter-Weyl theorem for a compact Lie group G asserts
that the two-sided regular representation — the space of continuous functions on G, under its left
and right translation actions — is a topological completion of the direct sum

⊕
V ⊗ V∗, ranging

over the irreducible finite-dimensional modules V. (The direct sum describes the polynomial
functions.) A variation of this, for a central extension Gτ by T, describes the space of sections of
the associated line bundle over G as the corresponding sum over irreducible τ-representations.
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Qua G × G-module, the regular representation of G is induced from the trivial G-module,
under the diagonal inclusion G ⊂ G × G. For finite G, the result can be expressed in terms of
equivariant K-theory: it asserts that the trivial representation [1] ∈ R(G) maps, under diagonal
inclusion G ⊂ G× G, to the class ∑[V ⊗V∗] ∈ R(G× G). To see this more clearly, identify R(G)
with KG×G(G), with the left×right action, and push forward to a point with G× G action. In the
presence of a twisting τ for R(G), we map [1] ∈ R(G) instead to Rτ×(−τ)(G× G). In constructing
this last push-forward, we have used the natural trivialisation of the sum of a central extension
τ of G with its opposite, so that the required twisting on KG×G(G) is canonically zero and the
“trivial” class [1] is well-defined.

17.2 Remark. When τ is graded, our formulation of Peter-Weyl conceals a finer point. The module
Rτ(G) of graded representations has now an odd component Rτ+1(G), defined from the super-
symmetric representations [FHT3, §4]. These are graded G-modules with a commuting action of the
rank one Clifford algebra Cliff(1). The contribution of such a super-symmetric representation V
to the Peter-Weyl sum is the (graded) tensor product V ⊗Cliff(1) V∗ over Cliff(1), and not over C.
However, this is exactly what we need to match the cup-product

Rτ+1(G)⊗ R−τ+1(G)→ Rτ×(−τ)+0(G× G);

indeed, the (graded) tensor product V ⊗C V∗ has a commuting Cliff(2) action, and defines an
element of K2, which is indeed where the cup-product initially lands [LM]. Tensoring over Cliff(1)
instead of C is the Morita identification of complex Cliff(2)-modules with vector spaces, which
implements the Bott isomorphism to K0.

(17.3) Loop groups. Before discussing the loop group analogue of this, let us recall the algebraic
Peter-Weyl theorem for loop groups; this is a special case of the Borel-Weil theorem of [T1]. As
in the preceding section, denote by GC((z)) and GC((w)) be the two Laurent completions of the
loop group LG at the points 0 and ∞ on the Riemann sphere. The Laurent polynomial loop group
L′GC = G[z, z−1] embeds in both (with w = z−1). The quotient variety Y := G((w))×L′GC

G((z)) for
the diagonal action is a homogeneous space for the product of the two loop groups, which should
be thought regarded as a generalised flag variety. For any twisting τ, the product O(τ − σ) �
O(σ− τ) of the opposite line bundles on the two factors carries an action of L′GC, so it descends
to an (algebraic) line bundle on Y. A special case of the Borel-Weil-Bott theorem of [T1] asserts
that, as a representation of G((w))× G((z)),

Γ (Y;O(τ − σ) �O(σ− τ)) ∼=
⊕

H
H′ ⊗H′,

with the sum ranging over the lowest-weight representations H for GC((w)) at level τ − σ.

(17.4) Topological interpretation. The topological construction in §17.1 breaks down for infinite com-
pact groups, but remarkably, it does carry over to loop groups. To start with, the diagonal self-
embedding of G leads to a Gysin map

ι∗ : KG(G)→ KG×G(G× G),

with the Ad-action in both cases. When G is connected, this is a topological model for the classifying
map of the diagonal LG → LG × LG. For general G, the restriction of ι∗ to KG(G1) corresponds
to the diagonal of LG, whereas the restriction to KG( f )( f G1), in the notation of §7.7, captures the
diagonal embedding for the twisted loop group L f G. Finally, for any τ, we get a map

ιτ∗ : KG(G)→ Kτ×(−τ)
G×G (G× G), (17.5)

cancelling the pulled-back twisting by the earlier observation: the sum of extensions τ + (−τ) is
trivial on the diagonal LG.
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To describe ι∗, we replace KG(G) with the isomorphic group K∗G×G(G × G), the action being
now

(g1, g2).(x, y) = (g1xg−1
1 , g1yg−1

2 ).

The isomorphism with K∗G(G) arises by restriction to the diagonal G’s. The map G× G → G× G
inducing ι∗ sends (x, y) to (x, y−1xy). Note that the relative tangent bundle of this map is (stably)
equivariantly trivial, and there is a preferred relative orientation, if we use the same dual pair of
Spin modules on each pair of g’s, so there is no ambiguity coming from orientations.

17.6 Theorem (Peter-Weyl for Loop Groups). When τ is regular, we have

ιτ∗(1) = ∑H[H⊗H∗],

summing over the irreducible admissible representations H of LG, with the correspondence of defined in
Theorem 3. The analogue holds for each twisted loop group of G.

Without using Theorem 3, we can assert that ι∗(1) has a diagonal decomposition in the basis of
Kτ

G(G) produced from regular affine Weyl orbits and irreducible representations of the centralisers
(Theorem 7.10), and the complex-conjugate basis for K−τ

G (G). The two formulations are of course
related by Theorem 10.2. Let us state this more precisely: consider the “anti-diagonal” class [∆−]
on Λτ ×Λ−τ, which is identically 1 on pairs (λ,−λ) and null elsewhere. It is equivariant for the
diagonal We

aff-action. Also let τ′′ = τ′ − σ(t).

17.7 Lemma. The sum in the right-hand side of (17.6) corresponds to the direct image of [∆−] under the
direct image map

KWe
aff

(
Λτ

reg ×Λ−τ
reg

)
−→ Kτ”×(−τ”)

We
aff×We

aff

(
Λτ

reg ×Λ−τ
reg

)
.

Proof. Replacing both sides with the sets of orbits, represented by weights µ ∈ Λτ
+ and stabilisers

πµ ⊂We
aff, we get the direct sum over µ of the diagonal push-forwards

R(πµ)→ Rτ”(πµ)⊗ R−τ”(πµ),

and apply the topological Peter-Weyl theorem to each πµ.

For a torus T, the representation categories of LTτ and Γτ = (Π× T)τ are equivalent, and ιτ∗
captures the Peter-Weyl theorem for Γτ: diagonal induction of the trivial representation to Γτ ×
Γ−τ leads to the sum in (17.6). This result generalises to every group Ne

aff of ( f -twisted) geodesic
loops in N, and is the basis for the general proof. To convert it into a topological statement, we
will factor both the algebraic and the topological induction (direct image) maps into two steps,
with the second step being described by Lemma 17.7. Agreement of the other, first step is then
verified by a Dirac family construction generalising slightly the spectral flow family in §3. As the
general case may be obscured by the notational clutter imposed by the groups of components, we
handle the torus first.

(17.8) Example: G = T. Let ` = dim T and factor ιτ∗ into the direct images

K0
T(T)

Bdiag∗−−−→ Kτ×(−τ)−`
T×T (T)

diag∗−−→ Kτ×(−τ)+0
T×T (T × T), (17.9)

along the obvious diagonal morphisms. Describing diag∗ is easy. Double use the Key Lemma 5.2,
with the same group T2, followed by direct images (along t and t2) lead to isomorphisms

Kτ×(−τ)−`
T×T (T) ∼= K0(Λτ ×Π Λ−τ),

Kτ×(−τ)+0
T×T (T × T) ∼= K0(Λτ/Π×Λ−τ/Π).

(17.10)
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Moreover, diag∗ becomes the direct image between the groups on the right, and this is the map
appearing in Lemma 17.7.

In view of Lemma 17.7, we must check that Bdiag∗[1] in the middle group of (17.9) is the
anti-diagonal class [∆−]. We have a commutative square

K0
T(T)

Bdiag∗−−−→ τ×(−τ)K−`
T×T(T)

↑ � ↑
K0(T)

p∗−→ Kτ−`
T (T)

with the vertical arrows being the pull-backs, along the projection of BT to a point and the map
BT2 → BT induced by group multiplication. Our anti-diagonal class, in the upper right, is the
pull-back of the sum of the irreducible classes in Kτ−`

T (T). But we identified this in §3.6 with p∗[1],
as desired.

Proof of (17.6). Fix a twisting element f in the quasi-torus; we prove the theorem for L f G. We use
the notation of §6 and §7, except that we write G for G( f ), N for N( f ), W for W f for simplicity.

Step 1. In view of the following commutative square, in which ω∗(1) = 1,

KN( f T) ι∗−→ Kτ×(−τ)
N×N ( f T × f T)yω∗

yω∗

KG( f G1)
ι∗−→ Kτ×(−τ)

G×G ( f G1 × f G1)

it suffices to prove the theorem for the upper ι∗: that is, we may assume G = N.

Step 2. Let δ(N) be the left equaliser of the two projections N2 ⇒ N/T. Its Ad-action on f T2

preserves the diagonal copy of f T. With ` = dim T, we can factor ιτ∗ as

K0
N( f T)

Bdiag∗−−−→ Kτ×(−τ)−`
δ(N) ( f T)

diag∗−−→ Kτ×(−τ)+0
N2 ( f T × f T). (17.11)

Moreover, we have the “key Lemma” isomorphisms for M = T2 in δ(N) and N2,

Kτ×(−τ)−`
δ(N) ( f T) ∼= Kτ”×(−τ”)+0

We
aff

(
Λτ ×Λ−τ

)
,

Kτ×(−τ)+0
N2 ( f T × f T) ∼= Kτ”×(−τ”)+0

We
aff

2

(
Λτ ×Λ−τ

)
.

(17.12)

and, as in (6.2), diag∗ is the push-forward from upper to lower K-groups. We are reduced to
showing that Bdiag∗[1] ∈ Kτ×(−τ)−`

δ(N) ( f T) is the anti-diagonal class in the upper right group.

Step 3. Call δ(Ne
aff) the left equaliser of the projections Ne

aff × Ne
aff ⇒ We

aff. The presentation (6.5)
of f T as a homogeneous space for N n t leads to the isomorphisms

KN( f T) ∼= Kτ×(−τ)
Ne

aff
(t),

Kτ×(−τ)
δ(N) ( f T) ∼= Kτ×(−τ)

δ(Ne
aff)

(t),
(17.13)

as flagged in Remark 6.9. The twisting τ× (−τ) is null on the diagonal copy of Ne
aff in δ(Ne

aff), but
trivialising it in relation to the other twistings is the key step in finding Bdiag∗.
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Step 4. Call O(τ) the line bundle over T ∼= δ(Ne
aff)/Ne

aff descended from the line bundle of the
extension τ × (−τ) of δ(Ne

aff). This O(τ) carries a projective action of δ(Ne
aff), by left translations,

and its space of sections over T is, by definition, the representation Ind[1] induced from C under
the embedding Ne

aff ⊂ δ(Ne
aff)

τ×(−τ). This is the sought-after class [∆−] in (17.12).

Step 5. Finally, we show that, under the standard trivialisation of the extension τ× (−τ) over Ne
aff,

the direct image of [1] along the topological induction

K
τ×(−τ)+0
Ne

aff
(t)

Bdiag∗−−−→ Kτ×(−τ)−`
δ(Ne

aff)
(t)

is represented by the Dirac family on t coupled to Ind[1]. This implies its agreement with [∆−].
The argument repeats the discussion in §3.6, after observing that [1] corresponds to the class of
O(τ) in the chain of isomorphisms

[1] ∈ KNe
aff

(t) ∼= Kτ×(−τ)
Ne

aff
(t) ∼= Kτ×(−τ)

δ(Ne
aff)

(T × t).

Appendix

A. Affine roots and weights in the twisted case

We recall here the properties of diagram automorphisms, which lead to a concrete description of
the twisted affine algebras in terms of simple, finite-dimensional ones. The connection between
the two questions is due to Kac, to which we refer for a complete discussion [K, §7.9 and §7.10];
but we reformulate the basic facts more conveniently for us.

(A.1) When g is simple, the order of a diagram automorphism ε is r = 1, 2 or 3, with the last
value only possible for so(8). Assume that ε 6= 1; g must then be simply laced. We summarise the
relevant results from [K].

• The invariant sub-algebra g := gε is simple, with Cartan sub-algebra t := tε and Weyl group
W := Wε.

• The simple roots are the restrictions to t of those of g (with multiplicities removed).

• The ratio of long to short root square-lengths in g is r, save for g = su(3), when g = su(2).

• The ε-eigenspaces are irreducible g-modules. The two ε 6= 1-eigenspaces are isomorphic
when g = so(8) and r = 3.

(A.2) The weight θ. Denote by θ the highest weight of g
/
g , and let a0 = 2 when g = su(2` + 1)

and r = 2; else, let a0 = 1. Then, θ /a0 is the short dominant root of g. (When g = su(2` + 1),
g = so(2` + 1) and g

/
g is Sym2R2`+1 /R , whose highest-weight is twice the short root.) The basic

inner product on g restricts to a0 times the one on g; so θ2 = 2a0 /r .

A.3 Remark. With reference to [K, VI], we have θ = ∑ aiαi − asαs, where s = 0, except when
g = su(2` + 1), in which case s = 2`: if so, our θ differs from θ in loco citato.

(A.4) Twisted affine Weyl group. Denote by a the simplex of dominant elements ξ ∈ t satisfying
θ(ξ) ≤ 1/r. The ε-twisted affine Weyl group Waff(g, ε) is generated by the reflections about the walls
of a. Let R′ ⊂ t correspond to the root lattice R in t∗ under the g-basic inner product.
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A.5 Proposition ([K, Props. 6.5 and 6.6]). Waff(g, ε) is the semi-direct product W n R′. Its action on
t has a as fundamental domain. The Waff(g, ε)-stabiliser of any point in a is generated by the reflections
about the walls containing it.

Proof. This follows from the analogous result for the untwisted affine algebra based on the Lang-
lands dual to g, in which a is the fundamental alcove and R′ the co-root lattice.

(A.6) Twisted conjugacy classes. When G is simply connected, the points of a parametrise the con-
jugacy classes in G. The alcove a fulfils the same role for the ε-twisted conjugation g : h 7→
g · h · ε(g)−1.

A.7 Proposition. If G is simply connected, every ε-twisted conjugacy class in has a representative exp(2πξ),
for a unique ξ ∈ a. The twisted centraliser of exp(2πξ) in G is connected, and its Weyl group is isomorphic
to the stabiliser of ξ in Waff(g, ε).

Proof. For the first part, we must show, given (A.5) and (7.5), that the integer lattice of Tε in tε
∼= t is

R′, and that the ε-twisted action of W on Tε is the obvious one. Now, the first lattice is the image, in
the quotient tε of t, of the integer (co-root) lattice R∨ ⊂ t of T. As g is simply laced, R∨ is identified
with the root lattice R of g in t∗ by the basic inner product, so the integer lattice of Tε is also the
image of R in t∗. But, by (A.1), this agrees with the root lattice R of g. Concerning W, since that
is the Weyl group of Gε, we can find ε-invariant representatives for its elements, and their ε-action
coincides with the usual one.

Connectedness of twisted centralisers, for simply connected G, is due to Borel [Bo]. Moreover,
because maximal tori are maximal abelian subgroups, Tε is connected as well; and (7.5) identifies
the Weyl groups of centralisers as desired.

A.8 Remark. Connectedness of Tε can also be seen directly, as follows. Clearly, the ε-fixed point set
exp (aε) in the simplex exp(a), is connected. By regularity of t, every component of Tε contains a
regular element. This must be conjugate to some a ∈ exp(a), hence of the form w(a), with w ∈ W
and a ∈ exp(a). Invariance under ε implies w(a) = ε(w(a)) = ε(w)(ε(a)). As a and ε(a) are both
in a and regular, it follows that w = ε(w) and a = ε(a), so w(a) is in the W-image of exp(t), hence
in T.

(A.9) Affine roots and weights. The sub-algebra h = iRK ⊕ t⊕ iRE plays the role of a Cartan sub-
algebra of L̂′εg. The affine roots, living in h∗, are the h-eigenvalues of the adjoint action on L̂′εg. Define
the elements δ and K∗ of h∗ by δ(E) = 1/r, K∗(K) = 1, δ(K) = δ(t) = K∗(t) = K∗(E) = 0. The
simple affine roots are the simple roots of g, plus δ− θ; their Z-span is the affine root lattice Raff. The
positive roots are sums of simple roots. The standard nilpotent sub-algebra N is the sum of the positive
root spaces, and a triangular decomposition L̂′εgC = N⊕ h

C
⊕N is inherited from L̂′gC.

The simple co-roots are those of g, plus (K− β∨) /a0 , where β∨, the long dominant co-root of g,
satisfies λ(β∨) = 〈λ|θ〉/r.6 The restriction T̃ of the basic central extension (9.8) to T is the quotient
of iRK⊕ t by the affine co-root lattice R∨aff.

The weight lattice Λ̃ of L̃εG, in h∗, is the integral dual of R∨aff, and comprises the characters of T̃.
Calling Λ the (simply connected) weight lattice of g, we have

Λ̃ =

{
ZK∗ ⊕Λ, if g 6= su(2` + 1),
2ZK∗ ⊕Λ+ ∪ (2Z + 1)K∗ ⊕Λ− if g = su(2` + 1)

(A.10)

the superscript indicating the value of the character on the central element of Spin(2` + 1). The
affine weight lattice Λ̂ includes, in addition, the multiples of δ, giving the energy eigenvalue.

6Recall from A.2 that θ /a0 is a short root, and θ2 = 2a0 /r .
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The dominant weights pair non-negatively with the simple co-roots; this means that (k, λ, x)
is dominant iff λ is g-dominant and λ · θ ≤ k/r. The affine Weyl group Waff(g, ε) preserves the
constant level hyperplanes, and its lattice part R (A.5) acts by k-fold translation at level k. Every
positive-level weight has a unique dominant affine Weyl transform. Regular weights are those not
fixed by any reflection in Waff(g, ε). The important identity 〈ρ|θ〉+ θ2/2 = h∨/r [K, VI] implies
that an integral weight (k, λ, x) is dominant iff the shifted weight (k + h∨, λ + ρ, x) is dominant
regular.
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