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Introduction

Gromov-Witten theory

Among topological quantum field theories studied in past decades,
Gromov-Witten theory in 2D has enjoyed enduring interest.

This associates a compact symplectic manifold X a space of states H∗(X ).
Correlators assigned to surfaces with points labeled by states count the
pseudo-holomorphic maps to X with incidence conditions.

When the surfaces vary in a family, the numerical invariants refine to
cohomology classes on the Deligne-Mumford spaces Mn

g .

These invariants could contain enormous information, and a structural
classification has not been accomplished in general. (Exception, Givental’s
conjecture in semi-simple case: toric varieties, Grassmannians,...)

Mirror symmetry (Lerche, Vafa, Warner and refined by many others)
promises to reduce GW theory to more standard computations in the
complex geometry of a conjectural mirror manifold X∨.

It has been checked in many examples (toric Fanos, hypersurfaces therein).
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Introduction

Homological mirror symmetry

was introduced by Kontsevich to spell out the structure of the invariants.

His key idea: extend the “closed string” theory to an “open-closed” one,
involving surfaces with corners, and “boundary conditions” forming a
linear category with structure (Frobenius, or Calabi-Yau, or cyclic A∞).
This category, with enough structure, should determine all invariants.

On the symplectic side (X , ω), this is Fukaya’s A∞ category F(X );
on the complex side, DbCoh(X∨) (with its Yoneda structure); plus ?.

Homological Mirror symmetry, the conjectural match of the two structured
categories, has been verified in many examples: K 3 (Seidel); del Pezzo
surfaces, weighted projective spaces (Auroux, Katzarkov, Orlov); toric
Fanos (FO3+ Abouzaid+others); Calabi-Yau hypersufaces (Sheridan)

The mirror of a toric variety X with torus TC is the dual torus T∨C , with
standard volume, plus a super-potential Ψ, a Laurent polynomial .
The associated category of Ψ-Matrix factorizations is Z/2-graded only.
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Hamiltonian Lie group actions

Group actions and Hamiltonian quotients

Many GW computations involve Hamiltonian quotients of simpler varieties.
Thus, projective toric varieties are quotients of vector spaces by linear
torus actions. Their mirrors can be described in those terms.

Example (Givental-Hori-Vafa mirror; simplified)

The best-known case is Pn−1 = Cn//U(1), with mirror

(C∗)n−1 = {(z1, . . . , zn)|z1z2 · · · zn = q} ,Ψ = z1 + · · ·+ zn

For Y = Cn, with standard (C∗)n action, declare the mirror to be

Y ∨ = (C∗)n, Ψ = z1 + · · ·+ zn.

For X = Cn//K with KC ⊂ (C∗)n, X∨q is the fiber over q ∈ K∨C of the dual
surjection (C∗)n � K∨C , and the super-potential is the restricted Ψ.
(The Novikov variables q track degrees of holomorphic curves.)
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Hamiltonian Lie group actions

Mirror of a Lie group action. Langlands dual group

Addressing HMS in relation to Hamiltonian quotients raises the following

Basic Questions

1 Find the mirror structure on X∨ for a Hamiltonian group action on X .

2 In terms of this structure, what is the mirror to the GIT quotient?

Basic Answers (Torus case; 0th order approximation)

1 The mirror to a T -action on (X , ω) is a holomorphic map X∨ → T∨C .

2 The mirror of X//T is the fiber of X∨ over 1.

Basic Answers (Compact, connected G ; (−1)st order approximation)

1 The mirror to a G -action on X is a holomorphic map from X∨ to the
space of conjugacy classes in the Langlands dual group G∨C .

2 Not worth stating yet (the fiber over 1 is wrong).
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Hamiltonian Lie group actions

Problem with the answers: they are wrong

Pursuing them in the context of HMS quickly leads to paradoxes.

Thus, in the GHV mirror, the original Ψ has no critical points on Y , so its
matrix factorization category is zero.

We will not get the (interesting) Fukaya category of a toric variety by
gauging the zero category; and indeed, GHV tell us to first restrict Ψ to
the fiber of (C∗)n → K∨C and then compute MF.

On the face of it, this operation is not defined in terms of categories.

The right answers can be found using arguments from 4D QFT; the tour
covers some beautiful geometry. (I learnt these ideas from Ed Witten.)

This beautiful story is a fairy-tale for two reasons:
1 it is not rigorous, 2 history did not happen this way.
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Monopoles and 4D gauge theory

SU(2) magnetic monopoles

are solutions of the Bogomolny equation F = ∗Dφ on R3, where F is

the curvature of an su(2)-connection D and φ is valued in the ad-bundle.

They correspond to time-invariant ASD connections D + φ dt on R4.
Finiteness of the energy breaks the symmetry to U(1) on the sphere at ∞,
leading to a discrete invariant, the monopole charge n ≥ 0.

Monopole moduli spaces were studied by Atiyah, Donaldson, Hitchin,
Manton, Nahm, ... and shown to be hyper-Kähler manifolds.
The charge n moduli space was described in several ways; among them,

1 A specific Zariski-open subset of the nth Hilbert scheme of C∗ × C;
this is a partial resolution of singularities of T ∗(C∗)n/Sn, and is
naturally associated to the group U(n).

2 The space of solutions of Nahm’s equations dTi
ds + εjki TjTk = 0,

Ti (s) ∈ su(n), simple poles with Ress=0,2Ti giving the irrep of SU(2).
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Monopoles and 4D gauge theory

3D reduction of Yang-Mills theory

Seiberg and Witten studied the reduction of 4D Yang-Mills theory (which
has a topological version giving the Donaldson invariants) along a circle.

In the 0 radius limit, they described the low-energy regime of the SU(2)
theory as a Sigma-model in the space of vacua, which they identified as
the Atiyah-Hitchin monopole moduli space of charge 2.

Thus, they identified the 3-dimensional SU(2) gauge theory, got from 4D
by reducing along a circle of zero radius, with the Rozansky-Witten theory
of the hyper-Kähler Atiyah-Hitchin manifold.

Subsequent work (Argyres-Farragi) described SU(n) gauge theory, in terms
of the charge n monopole space. Martinec-Warner discussed a general G
in terms of the so-called periodic Toda integrable system, revealing a first
connection to the Langlands dual Lie algebra g∨.

(They did not quite give a complete description of the space.)
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Monopoles and 4D gauge theory

An equivalence of field theories identifies their (2-)categories of branes.

Now, boundary conditions for the 3D pure gauge theory are general 2D
gauged TQFTs: categories with (locally trivial) G -action.

Branes for RW theory were recently described by Kapustin and Rozansky.
They form a 2-category, generated by smooth holomorphic Lagrangians L.
Locally, the category End(L) is the tensor category DbCoh(L).
A L′ near L can be written as the graph of dΨ; Hom(L, L′) is the category
of matrix factorizations of Ψ over L. It’s supported on L ∩ L′.
The global description is deformed by the ambient symplectic manifold.

In other words, localized branes at L are O-linear categories on L.
Kapustin and Rozansky assert that these Lagrangian neighborhoods can
be patched to a (sheaf of) 2-categories.

Example (Cotangent bundle T ∗L)

The matrix factorizations for a Ψ ∈ O(L) constitute Hom(L; Γ(dΨ)).
This micro-localization of the MF category as a brane circumvents a
number of difficulties in the theory of curved algebras and categories.
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Mirror of a group action revisited

Key features of an A-model group action

Theorem

1 A Hamiltonian action of G on (X , ω) induces a locally trivial action of
G on F(X ). (Trivialized near 1 ∈ G )

2 This is described (up to homotopy) by a morphism of E2-algebras

C∗(ΩG )→ HCH∗(F(X ));

or, a module category structure of F(X ) over (C∗(ΩG )-modules,⊗).

3 The invariant part F(X )G is the fiber over 0 ∈ Spec C∗(ΩG ) of F(X ).

4 The latter “gauged category” should be closely related to F(X//G ).

Remark

H∗(ΩG ; C) is a (Laurent) polynomial ring, and is truly commutative (E∞).
The same is expected of HH∗(F(X )) (at least, when ∼= H∗(X )).
But an E2 morphism between commutative algebras contains more
information than the underlying morphism of algebras.
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Mirror of a group action revisited

The monopole and Rozansky-Witten connection

Theorem (Bezrkukavnikov-Finkelberg-Mirkovic)

1 Spec HG
∗ (ΩG ) is an affine resolution of singularities of (T ∗T∨C )/W .

2 Spec H∗(ΩG ) is fiber in Spec HG
∗ (ΩG ) over Z (G∨) ⊂ (T∨C )/W .

3 Spec HG
∗ (ΩG ) is algebraic symplectic, and Spec H∗(ΩG ) Lagrangian.

Completed there, HG (ΩG ) is the E2 Hochschild cohomology of
H∗(ΩG ) (a.k.a. the cotangent bundle.)

Remark

1 This E2HH∗ controls the formal E2 deformations of H∗(ΩG ).
Algebras with E2-action of H∗(ΩG ) micro-localize to Spec(E2HH∗),
defining branes for the Rozansky-Witten theory.
The BFM space provides a natural uncompletion for this.

2 G = SU(n) gives the SU(2)−monopole space of charge n.
General: solns. to Nahm’s equations in g∨ with principal sl(2) poles.
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Mirror of a group action revisited

Theorem (Sort of; BFM description of gauge theory)

The BFM un-completion governs A-models gauged by G .
Specifically, a G -action on a Fukaya category gives the germ of a brane in
the RW theory of Spec HG

∗ (ΩG ), near the Lagrangian H∗(ΩG ).
Gauging the theory requires extending this to a brane in the ambient space.

Remark

1 This theorem is partially a definition. Specifically, we are giving a
notion of a locally trivial G -action on a linear category, precise enough
to specify the gauged theory (the fixed-point category).

2 This un-completion strictifies a homotopy G -action to a “genuine”
G -action, and is analogous to passing from K (BG ) to KG (∗).

3 The 2-category of linear categories with locally trivial G -action has a
forgetful “underlying category” functor.
Unlike the case of G -action on vector spaces, this is not faithful.
So the description in terms of a (locally trivial, up to coherent
homotopy) group action on a category was only a starting point.
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Mirror of a group action revisited

Underlying category and invariant category

In the RW model, we must still describe geometrically two functors from
(2-)category of linear categories with G -action to linear categories:

1 The forgetful functor, remembering the underlying category;
this describes the original, pre-gauged TQFT.

2 The invariant category; this generates the gauged TQFT.

They are co-represented by the regular, resp. trivial representations of G ,
among categories with locally trivial action.

Theorem (Sort of)

1 The regular representation is the Lagrangian Spec H∗(ΩG ).

2 The trivial representation is the Lagrangian tC/W = T ∗1 T∨C /W .

(I mean the categories of coherent sheaves over these Lagrangians.)
1 is clear: it describes H∗(ΩG )-modules as a module category over itself.
2 is a key part to the BFM description of gauge theory.
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Mirror of a group action revisited

Deformations by H∗(BG ) and the bulk of BFM space

The Fukaya category F(X ) carries deformations parametrized by H∗(X ).
The gauged category F(X )G should carry deformations parametrized by
H∗G (X ), in particular, by H∗(BG ).

In fact, these deformations can be explained intrinsically:

1 As TQFT deformations: an α ∈ H∗(BG ) transgresses to a t(α) on
the moduli of G -bundles over a surface. The TQFT correlator
deforms by twisting the path integrand by exp t(α).

2 As deformations of the G -action on F(X ): H∗(BG ) parametrizes
Z/2-graded deformations of the locally trivial G -action on Vect.
The deformed F(X )G is the invariant part of the twisted category.

There is a clean geometric interpretation in the BFM space:
Projection to tC/W turns α into a Hamiltonian, and we use its flow.

The twisted representation Vectα is the flow of the identity fiber tC/W .
This allows one to access any part of brane in the BFM bulk.
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Mirror of a group action revisited

Pictures instead of thousands of words

The BFM space with the trivial and
the regular representations

Invariant category and underlying
category
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