
Representation Theory
CT, Lent 2005

1 What is Representation Theory?

Groups arise in nature as “sets of symmetries (of an object), which are closed under compo-
sition and under taking inverses”. For example, the symmetric group Sn is the group of all
permutations (symmetries) of {1, . . . , n}; the alternating group An is the set of all symmetries
preserving the parity of the number of ordered pairs (did you really remember that one?); the
dihedral group D2n is the group of symmetries of the regular n-gon in the plane. The orthogonal
group O(3) is the group of distance-preserving transformations of Euclidean space which fix the
origin. There is also the group of all distance-preserving transformations, which includes the
translations along with O(3).1

The official definition is of course more abstract, a group is a set G with a binary operation
∗ which is associative, has a unit element e and for which inverses exist. Associativity allows a
convenient abuse of notation, where we write gh for g ∗ h; we have ghk = (gh)k = g(hk) and
parentheses are unnecessary. I will often write 1 for e, but this is dangerous on rare occasions,
such as when studying the group Z under addition; in that case, e = 0.

The abstract definition notwithstanding, the interesting situation involves a group “acting”
on a set. Formally, an action of a group G on a set X is an “action map” a : G×X → X which
is compatible with the group law, in the sense that

a(h, a(g, x)) = a(hg, x) and a(e, x) = x.

This justifies the abusive notation a(g, x) = g.x or even gx, for we have h(gx) = (hg)x.
From this point of view, geometry asks, “Given a geometric object X, what is its group of

symmetries?” Representation theory reverses the question to “Given a group G, what objects X
does it act on?” and attempts to answer this question by classifying such X up to isomorphism.

Before restricting to the linear case, our main concern, let us remember another way to
describe an action of G on X. Every g ∈ G defines a map a(g) : X → X by x 7→ gx. This
map is a bijection, with inverse map a(g−1): indeed, a(g−1) ◦ a(g)(x) = g−1gx = ex = x from
the properties of the action. Hence a(g) belongs to the set Perm(X) of bijective self-maps of X.
This set forms a group under composition, and the properties of an action imply that

1.1 Proposition. An action of G on X “is the same as” a group homomorphism α : G →
Perm(X).

1.2 Remark. There is a logical abuse here, clearly an action, defined as a map a : G×X → X is
not the same as the homomorphism α in the Proposition; you are meant to read that specifying
one is completely equivalent to specifying the other, unambiguously. But the definitions are
designed to allow such abuse without much danger, and I will frequently indulge in that (in fact
I denoted α by a in lecture).2

1This group is isomorphic to the semi-direct product O(3) n R3 — but if you do not know what this means,
do not worry.

2With respect to abuse, you may wish to err on the side of caution when writing up solutions in your exam!
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The reformulation of Prop. 1.1 leads to the following observation. For any action a H on X
and group homomorphism ϕ : G→ H, there is defined a restricted or pulled-back action ϕ∗a of
G on X, as ϕ∗a = a ◦ ϕ. In the original definition, the action sends (g, x) to ϕ(g)(x).

(1.3) Example: Tautological action of Perm(X) on X

This is the obvious action, call it T , sending (f, x) to f(x), where f : X → X is a bijection
and x ∈ X. Check that it satisfies the properties of an action! In this language, the action a of
G on X is α∗T , with the homomorphism α of the proposition — the pull-back under α of the
tautological action.

(1.4) Linearity.
The question of classifying all possible X with action of G is hopeless in such generality, but
one should recall that, in first approximation, mathematics is linear. So we shall take our X to
a vector space over some ground field, and ask that the action of G be linear, as well, in other
words, that it should preserve the vector space structure. Our interest is mostly confined to the
case when the field of scalars is C, although we shall occasional mention how the picture changes
when other fields are studied.

1.5 Definition. A linear representation ρ of G on a complex vector space V is a set-theoretic
action on V which preserves the linear structure, that is,

ρ(g)(v1 + v2) = ρ(g)v1 + ρ(g)v2,∀v1,2 ∈ V,
ρ(g)(kv) = k · ρ(g)v,∀k ∈ C,v ∈ V

Unless otherwise mentioned, representation will mean finite-dimensional complex representation.

(1.6) Example: The general linear group
Let V be a complex vector space of dimension n <∞. After choosing a basis, we can identify it
with Cn, although we shall avoid doing so without good reason. Recall that the endomorphism
algebra End(V ) is the set of all linear maps (or operators) L : V → V , with the natural addition
of linear maps and the composition as multiplication. (If you do not remember, you should
verify that the sum and composition of two linear maps is also a linear map.) If V has been
identified with Cn, a linear map is uniquely representable by a matrix, and the addition of linear
maps becomes the entry-wise addition, while the composition becomes the matrix multiplication.
(Another good fact to review if it seems lost in the mists of time.)

Inside End(V ) there is contained the group GL(V ) of invertible linear operators (those
admitting a multiplicative inverse); the group operation, of course, is composition (matrix mul-
tiplication). I leave it to you to check that this is a group, with unit the identity operator Id.
The following should be obvious enough, from the definitions.

1.7 Proposition. V is naturally a representation of GL(V ).

It is called the standard representation of GL(V ). The following corresponds to Prop. 1.1,
involving the same abuse of language.

1.8 Proposition. A representation of G on V “is the same as” a group homomorphism from
G to GL(V ).

Proof. Observe that, to give a linear action of G on V , we must assign to each g ∈ G a linear
self-map ρ(g) ∈ End(V ). Compatibility of the action with the group law requires

ρ(h) (ρ(g)(v)) = ρ(hg)(v), ρ(1)(v) = v, ∀v ∈ V,

whence we conclude that ρ(1) = Id, ρ(hg) = ρ(h) ◦ ρ(g). Taking h = g−1 shows that ρ(g) is
invertible, hence lands in GL(V ). The first relation then says that we are dealing with a group
homomorphism.
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1.9 Definition. An isomorphism φ between two representations (ρ1, V1) and (ρ2, V2) of G is a
linear isomorphism φ : V1 → V2 which intertwines with the action of G, that is, satisfies

φ (ρ1(g)(v)) = ρ2(g)(φ(v)).

Note that the equality makes sense even if φ is not invertible, in which case it is just called
an intertwining operator or G-linear map. However, if φ is invertible, we can write instead

ρ2 = φ ◦ ρ1 ◦ φ−1, (1.10)

meaning that we have an equality of linear maps after inserting any group element g. Observe
that this relation determines ρ2, if ρ1 and φ are known. We can finally formulate the

Basic Problem of Representation Theory: Classify all representations of a given group G,
up to isomorphism.

For arbitrary G, this is very hard! We shall concentrate on finite groups, where a very good
general theory exists. Later on, we shall study some examples of topological compact groups,
such as U(1) and SU(2). The general theory for compact groups is also completely understood,
but requires more difficult methods.

I close with a simple observation, tying in with Definition 1.9. Given any representation ρ
of G on a space V of dimension n, a choice of basis in V identifies this linearly with Cn. Call
the isomorphism φ. Then, by formula (1.10), we can define a new representation ρ2 of G on
Cn, which is isomorphic to (ρ, V ). So any n-dimensional representation of G is isomorphic to a
representation on Cn. The use of an abstract vector space does not lead to ‘new’ representation,
but it does free us from the presence of a distinguished basis.

2 Lecture

Today we discuss the representations of a cyclic group, and then proceed to define the important
notions of irreducibility and complete reducibility

(2.1) Concrete realisation of isomorphism classes
We observed last time that every m-dimensional representation of a group G was isomorphic
to a representation on Cm. This leads to a concrete realisation of the set of m-dimensional
isomorphism classes of representations.

2.2 Proposition. The set of m-dimensional isomorphism classes of G-representations is in
bijection with the quotient

Hom (G; GL(m; C)) /GL(m; C)

of the set of group homomorphism to GL(m) by the overall conjugation action on the latter.

Proof. Conjugation by φ ∈ GL(m) sends a homomorphism ρ to the new homomorphism g 7→
φ ◦ ρ(g) ◦ φ−1. According to Definition 1.9, this has exactly the effect of identifying isomorphic
representations.

2.3 Remark. The proposition is not as useful (for us) as it looks. It can be helpful in under-
standing certain infinite discrete groups — such as Z below — in which case the set Hom can
have interesting geometric structures. However, for finite groups, the set of isomorphism classes
is finite so its description above is not too enlightening.
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(2.4) Example: Representations of Z.
We shall classify all representations of the group Z, with its additive structure. We must have
ρ(0) = Id. Aside from that, we must specify an invertible matrix ρ(n) for every n ∈ Z. However,
given ρ(1), we can recover ρ(n) as ρ(1 + . . . + 1) = ρ(1)n. So there is no choice involved.
Conversely, for any invertible map ρ(1) ∈ GL(m), we obtain a representation of Z this way.

Thus, m-dimensional isomorphism classes of representations of Z are in bijection with the
conjugacy classes in GL(m). These can be parametrised by the Jordan canonical form (see the
next example). We will have m continuous parameters — the eigenvalues, which are non-zero
complex numbers, and are defined up to reordering — and some discrete parameters whenever
two or more eigenvalues coincide, specifying the Jordan block sizes.

(2.5) Example: the cyclic group of order n
Let G = {1, g, . . . , gn−1}, with the relation gn = 1. A representation of G on V defines an
invertible endomorphism ρ(g) ∈ GL(V ). As before, ρ(1) = Id and ρ(gk) = ρ(g)k, so all other
images of ρ are determined by the single operator ρ(g).

Choosing a basis of V allows us to convert ρ(g) into a matrix A, but we shall want to be
careful with our choice. Recall from general theory that there exists a Jordan basis in which
ρ(g) takes its block-diagonal Jordan normal form

A =


J1 0 . . . 0
0 J2 . . . 0

· · · · · ·
0 0 . . . Jm


where the Jordan blocks Jk take the form

J =


λ 1 0 . . . 0
0 λ 1 . . . 0

· · ·
0 0 0 . . . 1
0 0 0 . . . λ

 .
However, we must impose the condition An = Id. But An itself will be block-diagonal, with
blocks Jn

k , so we must have Jn
k = 1. To compute that, let N be the Jordan matrix with λ = 0;

we then have J = λId +N , so

Jn = (λId +N)n = λnId +
(
n

1

)
λn−1N +

(
n

2

)
λn−2N2 + . . . ;

but notice that Np, for any p, is the matrix with zeroes and ones only, with the ones in index
position (i, j) with i = j+k (a line parallel to the diagonal, k steps above it). So the sum above
can be Id only if λn = 1 and N = 0. In other words, J is a 1× 1 block, and ρ(g) is diagonal in
this basis. We conclude the following

2.6 Proposition. If V is a representation of the cyclic group G of order n, there exists a basis in
which the action of every group element is diagonal, the with nth roots of unity on the diagonal.

In particular, the m-dimensional representations of Cn are classified up to isomorphism by
unordered m-tuples of nth roots of unity.

(2.7) Example: Finite abelian groups
The discussion for cyclic groups generalises to any finite Abelian group A. (The resulting
classification of representations is more or less explicit, depending on whether we are willing to
use the classification theorem for finite abelian groups; see below.) We recall the following fact
from linear algebra:
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2.8 Proposition. Any family of commuting, separately diagonalisable m ×m matrices can be
simultaneously diagonalised.

The proof is delegated to the example sheet; at any rate, an easier treatment of finite abelian
groups will emerge from Schur’s Lemma in Lecture 4.

This implies that any representation of A is isomorphic to one where every group element
acts diagonally. Each diagonal entry then determines a one-dimensional representation of A.
So the classification reads: m-dimensional isomorphism classes of representations of A are in
bijection with unordered m-tuples of 1-dimensional representations. Note that for 1-dimensional
representations, viewed as homomorphisms ρ : A→ C×, there is no distinction between identity
and isomorphism (the conjugation action of GL(1; C) on itself is trivial).

To say more, we must invoke the classification of finite abelian groups, according to which A
is isomorphic to a direct product of cyclic groups. To specify a 1-dimensional representation of A
we must then specify a root of unity of the appropriate order independently for each generator.

(2.9) Subrepresentations and Reducibility
Let ρ : G→ GL(V ) be a representation of G.

2.10 Definition. A subrepresentation of V is a G-invariant subspace W ⊆ V ; that is, we have

∀w ∈W, g ∈ G⇒ ρ(g)(w) ∈W.

W becomes a representation of G under the action ρ(g).

Recall that, given a subspace W ⊆ V , we can form the quotient space V/W , the set of W -
cosets v +W in V . If W was G-invariant, the G-action on V descends to (=defines) an action
on V/W by setting g(v +W ) := ρ(g)(v) +W . If we choose another v′ in the same coset as v,
then v − v′ ∈W , so ρ(g)(v − v′) ∈W , and then the cosets ρ(v) +W and ρ(v′) +W agree.

2.11 Definition. With this action, V/W is called the quotient representation of V under W .

2.12 Definition. The direct sum of two representations (ρ1, V1) and (ρ2, V2) is the space V1⊕V2

with the block-diagonal action ρ1 ⊕ ρ2 of G.

(2.13) Example
In the direct sum V1 ⊕ V2, V1 is a sub-representation and V2 is isomorphic to the associated
quotient representation. Of course the roles of 1 and 2 can be interchanged. However, one should
take care that for an arbitrary group, it need not be the case that any representation V with
subrepresentation W decomposes as W ⊕W/V . This will be proved for complex representations
of finite groups.

2.14 Definition. A representation is called irreducible if it contains no proper invariant sub-
spaces. It is called completely reducible if it decomposes as a direct sum of irreducible sub-
representations.

In particular, irreducible representations are completely reducible.
For example, 1-dimensional representations of any group are irreducible. Earlier, we thus

proved that finite-dimensional complex representations of a finite abelian group are completely
reducible: indeed, we decomposed V into a direct sum of lines L1⊕. . .⊕Ldim V , along the vectors
in the diagonal basis. Each line is preserved by the action of the group. In the cyclic case, the
possible actions of Cn on a line correspond to the n eligible roots of unity to specify for ρ(g).

2.15 Proposition. Every complex representation of a finite abelian group is completely re-
ducible, and every irreducible representation is 1-dimensional.

It will be our goal to establish an analogous proposition for every finite group G. The result
is called the Complete Reducibility Theorem. For non-abelian groups, we shall have to give up
on the 1-dimensional requirement, but we shall still salvage a canonical decomposition.

5



3 Complete Reducibility and Unitarity

In the homework, you find an example of a complex representation of the group Z which is not
completely reducible, and also of a representation of the cyclic group of prime order p over the
finite field Fp which is not completely reducible. This underlines the importance of the following
Complete Reducibility Theorem for finite groups.

3.1 Theorem. Every complex representation of a finite group is completely reducible.

The theorem is so important that we shall give two proofs. The first uses inner products,
and so applies only to R or C, but generalises to compact groups. The more algebraic proof, on
the other hand, extends to any fields of scalars whose characteristic does not divide the order of
the group (equivalently, the order of the group should not be 0 in the field).

Beautiful as it is, the result would have limited value without some supply of irreducible
representations. It turns out that the following example provides an adequate supply.

(3.2) Example: the regular representation
Let C[G] be the vector space of complex functions on G. It has a basis {eg}g∈G, with eg

representing the function equal to 1 at g and 0 elsewhere. G acts on this basis as follows:

λ(g)(eh) = egh.

This set-theoretic action extends by linearity to the vector space:

λ(g)
(∑

h∈G vh · eh

)
=
∑

h∈G vh · λ(g)eh =
∑

h∈G vh · egh.

(Exercise: check that this defines a linear action.) On coordinates, the action is opposite to what
you might expect: namely, the h-coordinate of λ(g)(v) is vg−1h. The result is the left regular
representation of G. Later we will decompose λ into irreducibles, and we shall see that every
irreducible isomorphism class of G-reps occurs in the decomposition.

3.3 Remark. If G acts on a set X, let C[X] be the vector space of functions on X, with obvious
basis {ex}x∈X . By linear extension of the permutation action ρ(g)(ex) = egx, we get a linear
action of G on C[X]; this is the permutation representation associated to X.

(3.4) Unitarity
Inner products are an important aid in investigating real or complex representations, and lead
to a first proof of Theorem 3.1.

3.5 Definition. A representation ρ of G on a complex vector space V is unitary if V has been
equipped with a hermitian inner product 〈 | 〉 which is preserved by the action of G, that is,

〈v|w〉 = 〈ρ(g)(v)|ρ(g)(w)〉, ∀v,w ∈ V, g ∈ G.

It is unitarisable if it can be equipped with such a product (even if none has been chosen).

For example, the regular representation of a finite group is unitarisable: it is made unitary by
declaring the standard basis vectors eg to be orthonormal.

The representation is unitary iff the homomorphism ρ : G→ GL(V ) lands inside the unitary
group U(V ) (defined with respect to the inner product). We can restate this condition in the
form ρ(g)∗ = ρ(g−1). (The latter is also ρ(g)−1).

3.6 Theorem (Unitary Criterion). Finite-dimensional unitary representations of any group
are completely reducible.

The proof relies on the following
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3.7 Lemma. Let V be a unitary representation of G and let W be an invariant subspace. Then,
the orthocomplement W⊥ is also G-invariant.

Proof. We must show that, ∀v ∈ W⊥ and ∀g ∈ G, gv ∈ W⊥. Now, v ∈ W⊥ ⇔ 〈v|w〉 = 0,
∀w ∈ W . If so, then 〈gv|gw〉 = 0, for any g ∈ G and ∀w ∈ W . This implies that 〈gv|w′〉 = 0,
∀w′ ∈W , since we can choose w = g−1w′ ∈W , using the invariance of W . But then, gv ∈W⊥,
and g ∈ G was arbitrary.

We are now ready to prove the following stronger version of the unitary criterion (3.6).

3.8 Theorem. A finite-dimensional unitary representation of a group admits an orthogonal
decomposition into irreducible unitary sub-representations.

Proof. Clearly, any sub-representation is unitary for the restricted inner product, so we must
merely produce the decomposition into irreducibles. Assume that V is not irreducible; it then
contains a proper invariant subspace W ⊆ V . By Lemma 3.7, W⊥ is another sub-representation,
and we clearly have an orthogonal decomposition V = W⊕W⊥, which isG-invariant. Continuing
with W and W⊥ must terminate in an irreducible decomposition, by finite-dimensionality.

3.9 Remark. The assumption dimV < ∞ is in fact unnecessary for finite G, but cannot be
removed without changes to the statement, for general G. For representations of infinite, non-
compact groups on infinite-dimensional (Hilbert) spaces, the most we can usually hope for is a
decomposition into a direct integral of irreducibles. For example, this happens for the translation
action of the group R on the Hilbert space L2(R). The irreducible “components” are the Fourier
modes exp(ikx), labelled by k ∈ R; note that they are not quite in L2. Nonetheless, there results
an integral decomposition of any vector f(x) ∈ L2(R) into Fourier modes,

f(x) =
1
2π

∫
R
f̂(k) exp(−ik · x)dk,

known to you as the Fourier inversion formula; f̂(k)/2π should be regarded as the coordinate
value of f along the “basis vector” exp(−ikx). Even this milder expectation of integral decompo-
sition can fail for more general groups, and leads to delicate and difficult problems of functional
analysis (von Neumann algebras).

3.10 Theorem (Weyl’s unitary trick). Finite-dimensional representations of finite groups
are unitarisable.

Proof. Starting with a hermitian, positive definite inner product 〈 | 〉 on your representation,
construct an new one 〈 | 〉′ by averaging over G,

〈v|w〉′ := 1
|G|

∑
g∈G

〈gv|gw〉.

Check invariance and positivity (homework).

3.11 Remark. Weyl’s unitary trick applies to continuous representations of compact groups. In
that case, we use integration over G to average. The key point is the existence of a measure
on G which is invariant for the translation action of the group on itself (the Haar measure).
For groups of geometric origin, such as U(1) (and even U(n) or SU(n)) the existence of such a
measure is obvious, but in general it is a difficult theorem.

The complete reducibility theorem (3.1) for finite groups follows from Theorem 3.8 and
Weyl’s unitary trick.
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(3.12) Alternative proof of Complete Reducibility
The following argument makes no appeal to inner products, and so has the advantage of working
over more general ground fields.

3.13 Lemma. Let V be a finite-dimensional representation of the finite group G over a field
of characteristic not dividing |G|. Then, every invariant subspace W ⊆ V has an invariant
complement W ′ ⊆ V .

Recall that the subspace W ′ is a complement of W if W ⊕W ′ = V .

Proof. The complementing condition can be broken down into two parts,

• W ∩W ′ = {0}

• dimW + dimW ′ = dimV .

We’d like to construct the complement using the same trick as with the inner product, by “av-
eraging a complement over G” to produce an invariant complement. While we cannot average
subspaces, note that any complement of W is completely determined as the kernel of the projec-
tion operator P : V → W , which sends a vector v ∈ V to its W -component P (v). Choose now
an arbitrary complement W” ⊆ V (not necessarily invariant) and call P the projection operator.
It satisfies

• P = Id on W

• ImP = W .

Now let Q := 1
|G|
∑

g∈G g ◦ P ◦ g−1. I claim that:

• Q commutes with G, that is, Q ◦ h = h ◦Q, ∀h ∈ G;

• Q = Id on W ;

• ImQ = W .

The first condition implies that W ′ := kerQ is a G-invariant subspace. Indeed, v ∈ kerQ ⇒
Q(v) = 0, hence h ◦Q(v) = 0, hence Q(hv) = 0 and hv ∈ kerQ, ∀h ∈ G. The second condition
implies that W ′ ∩W = {0}, while the third implies that dimW ′ + dimW = dimV ; so we have
constructed our invariant complement.

4 Schur’s Lemma

To understand representations, we also need to understand the automorphisms of a representa-
tion. These are the invertible self-maps commuting with the G-action. To see the issue, assume
given a representation of G, and say you have performed a construction within it (such as a
drawing of your favourite Disney character; more commonly, it will be a distinguished geometric
object). If someone presents you with another representation, claimed to be isomorphic to yours,
how uniquely can you repeat your construction in the other copy of the representation? Schur’s
Lemma answers this for irreducible representations.

4.1 Theorem (Schur’s lemma over C). If V is an irreducible complex G-representation,
then every linear operator φ : V → V commuting with G is a scalar.
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Proof. Let λ be an eigenvalue of φ. I claim that the eigenspace Eλ is G-invariant. Indeed,
v ∈ Eλ ⇒ φ(v) = λv, whence

φ(gv) = gφ(v) = g(λv) = λ · gv,

so gv ∈ Eλ, and g was arbitrary. But then, Eλ = V by irreducibility, so φ = λId.

Given two representations V and W , we denote by HomG(V,W ) the vector space of inter-
twiners from V to W , meaning the linear operators which commute with the G-action.

4.2 Corollary. If V and W are irreducible, the space HomG(V,W ) is either 1-dimensional or
{0}, depending on whether or not the representations are isomorphic. In the first case, any
non-zero map is an isomorphism.

Proof. Indeed, the kernel and the image of an intertwiner φ are invariant subspaces of V and
W , respectively (proof as for the eigenspaces above). Irreducibility leaves kerφ = 0 or V and
=φ = 0 or W as the only options. So if φ is not injective, kerφ = V and φ = 0. If φ is injective
and V 6= 0, then =φ = W and so φ is an isomorphism. Finally, to see that two intertwiners φ, ψ
differ by a scalar factor, apply Schur’s lemma to φ−1 ◦ ψ.

(4.3) Schur’s Lemma over other fields
The correct statement over other fields (even over R) requires some preliminary definitions.

4.4 Definition. An algebra over a field k is an associative ring with unit, containing a distin-
guished copy of k, commuting with every algebra element, and with 1 ∈ k being the algebra
unit. A division ring is a ring where every non-zero element is invertible, and a division algebra
is a division ring which is also a k-algebra.

4.5 Definition. Let V be a G-representation over k. The endomorphism algebra EndG(V ) is
the space of linear self-maps φ : V → V which commute with the group action, ρ(g)◦φ = φ◦ρ(g),
∀g ∈ G. The addition is the usual addition of linear maps, and the multiplication is composition.

I entrust it to your care to check that EndG(V ) is indeed a k-algebra. In earlier notation,
EndG(V ) = HomG(V, V ); however, HomG(V,W ) is only a vector space in general.

4.6 Theorem (Schur’s Lemma). If V is an irreducible finite-dimensional G-representation
over k, then EndG(V ) is a finite-dimensional division algebra over k.

Proof. For any φ : V → V commuting with G, kerφ and Imφ are G-invariant subspaces.
Irreducibility implies that either kerφ = {0}, so φ is injective and then an isomorphism (for
dimensional reasons, or because Imφ = V ), or else kerφ = V and then φ = 0.

A second proof of Schur’s Lemma over C can now be deduced from the following.

4.7 Proposition. The only finite-dimensional division algebra over C is C itself.

Proof. Let, indeed, A be the algebra and α ∈ A. The elements 1, α, α2, . . . of the finite-
dimensional vector space A over C must be linearly dependent. So we have a relation P (α) = 0
in A, for some polynomial P with complex coefficients. But such a polynomial factors into linear
terms

∏
k (α− αk), for some complex numbers αk, the roots of P . Since we are in a division

ring and the product is zero, one of the factors must be zero, therefore α ∈ C and so A = C.

4.8 Remark. Over the reals, there are three finite-dimensional division algebras, namely R, C
and H. All of these can occur as endomorphism algebras of irreducibles of finite groups (see
Example Sheet 1).
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(4.9) Application: Finite abelian groups revisited
Schur’s Lemma gives a shorter proof of the 1-dimensionality of irreps for finite abelian groups.

4.10 Theorem. Any irreducible complex representation of an abelian group G is one-dimensional.

Proof. Let g ∈ G and call ρ the representation. Then, ρ(g) commutes with every ρh. By
irreducibility and Schur’s lemma, it follows that ρ(g) is a scalar. As each group element acts by
a scalar, every line in V is invariant, so irreducibility implies that V itself is a line.

As one might expect from the failure of Schur’s lemma, this proposition is utterly false over
other ground fields. For example, over the reals, the two irreducible representations of Z/3
have dimensions 1 and 2. (They are the trivial and the rotation representations, respectively).
However, one can show in general that the irreps are 1-dimensional over their endomorphism
ring, which is an extension field of k.

The structure theorem asserts that every finite abelian G splits as
∏

k Cnk
, for cyclic groups

Cnk
of orders nk. Choose a generator gk in each factor; this must act on any line by a root

of unity of order nk. So, to specify a one-dimensional representation, one must choose such
a root of unity for each k. In particular, the number of irreducible isomorphism classes of
representations of a finite abelian group equals the order of the group. Nonetheless, there is
no canonical correspondence between group elements and representations; one must choose
generators in each cyclic factor for that.

4.11 Remark. The equality above generalises to non-abelian finite groups, but not as naively as
one might think. One correct statement is that the number of irreducible isomorphism classes
equals the number of conjugacy classes in the group. Another generalisation asserts that the
squared dimensions of the irreducible isomorphism classes add up to the order of the group.

5 Isotypical Decomposition

To motivate the result we prove today, recall that any diagonalisable linear endomorphism
A : V → V leads to an eigenspace decomposition of the space V as

⊕
λ V (λ), where V (λ)

denotes the subspace of vectors verifying Av = λv. The decomposition is canonical, in the sense
that it depends on A alone and no other choices. (By contrast, there is no canonical eigenbasis of
V : we must choose a basis in each V (λ) for that.) To show how useful this is, we now classify the
irreducible representations of D6 “by hand”, also proving complete reducibility in the process.

(5.1) Example: Representations of D6

The symmetric group S3 on three letters, also isomorphic to the dihedral group D6, has two
generators g, r satisfying g3 = r2 = 1, gr = rg−1. It is easy to spot three irreducible represen-
tations:

• The trivial 1-dimensional representation 1

• The sign representation S

• The geometric 2-dimensional representation W .

All these representations are naturally defined on real vector spaces, but we wish to work with
the complex numbers so we view them as complex vector spaces instead. For instance, the
2-dimensional rep. is defined by W = C2 by letting g act on W = C2 as the diagonal matrix

ρ(g) = diag
[
ω, ω2

]
, and r as the matrix ρ(r) =

[
0 1
1 0

]
; here, ω = exp

(
2πi
3

)
is the basic cube

root of unity. (Exercise: Relate this to the geometric action of D6. You must change bases, to
diagonalise g.)
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Let now (π, V ) be any complex representation of D6. We can diagonalise the action of π(g)
and split V into eigenspaces,

V = V (1)⊕ V (ω)⊕ V (ω2).

The relation rgr−1 = g−1 shows that π(r) must preserve V (1) and interchange the other sum-
mands: that is, π(r) : V (ω) → V (ω2) is an isomorphism, with inverse π(r) (since r2 = 1).
Decompose V (1) into the π(r)-eigenspaces; the eigenvalues are ±1, and since g acts trivially it
follows that V (1) splits into a sum of copies of 1 and S. Further, choose a basis e1, . . . en of
V (ω), and let e′k = π(r)ek. Then, π(r) acts on the 2-dimensional space Cek⊕Ce′k as the matrix[
0 1
1 0

]
, while π(g) acts as diag

[
ω, ω2

]
. It follows that we have split V (ω)⊕V (ω2) into n copies

of the 2-dimensional representation W .

(5.2) Decomposition into isotypical components
Continuing the general theory, the next task is to understand completely reducible representa-
tions in terms of their irreducible constituents. A completely reducible V decomposes into a sum
of irreducibles. Grouping isomorphic irreducible summands into blocks, we write V ∼=

⊕
k Vk,

where each Vk is isomorphic to a sum of nk copies of the irreducible representation Wk; the
latter are assumed non-isomorphic for different k’s. Another notation we might employ is

V ∼=
⊕

k
W⊕nk

k .

We call nk the multiplicity of Wk in V , and the decomposition of V just described the canonical
decomposition of V , or decomposition into isotypical components Vk. This terminology must now
be justified: we do not know yet whether this decomposition is unique, and not even whether
the nk are unambiguously defined.

5.3 Lemma. Let V =
⊕

k Vk, V ′ =
⊕

k V
′
k be canonical decompositions of two representations

V and V ′. Then, any G-invariant homomorphism φ : V ′ → V maps V ′
k to Vk.

Note that, for any completely reducible V and V ′, we can arrange the decompositions to be
labelled by the same indexes, adding zero blocks if some Wk is not present in the decomposition.
Obviously, φ will be zero on those. We are not assuming uniqueness of the decompositions;
rather, this will follow from the Lemma.

Proof. We consider the “block decomposition” of φ with respect to the direct sum decomposi-
tions of V and V ′. Specifically, restricting φ to the summand V ′

l and projecting to Vk leads to
the “block” φkl : V ′

l → Vk, which is a linear G-map. Consider now an off-diagonal block φkl,
k 6= l. If we decompose Vk and V ′

l further into copies of irreducibles Wk and Wl, the resulting
blocks of φkl give G-linear maps between non-isomorphic irreducibles, and such maps are all
null by Corollary 4.2. So φkl = 0 if k 6= l, as asserted.

5.4 Theorem. Let V =
⊕
Vk be a canonical decomposition of V .

(i) Every sub-representation of V which is isomorphic to Wk is contained in Vk.
(ii) The canonical decomposition is unique, that is, it does not depend on the original decompo-
sition of V into irreducibles.
(iii) The endomorphism algebra EndG(Vk) is isomorphic to a matrix algebra Mnk

(C), a choice
of isomorphism coming from a decomposition of Vk into a direct sum of the irreducible Wk.
(iv) EndG(V ) is isomorphic to the direct sum of matrix algebras

⊕
k Mnk

(C), block-diagonal
with respect to the canonical decomposition of V .

11



Proof. Part (i) follows from the Lemma by taking V ′ = Wk. This gives an intrinsic description
of Vk, as the sum of all copies of Wk contained in V , leading to part (ii).

Let φ ∈ EndG(Vk) write Vk as a direct sum ∼= W⊕nk
k of copies of Wk. In the resulting

block-decomposition of φ, each block φpq is a G-invariant linear map between copies of Wk. By
Schur’s lemma, all blocks are scalar multiples of the identity: φpq = fpq · Id, for some constant
fpq. Assigning to φ the matrix [fpq] identifies EndG(Vk) with Mnk

(C).3 Part (iv) follows from
(iii) and the Lemma.

5.5 Remark. When the ground field is not C, we must allow the appropriate division rings to
replace C in the theorem.

(5.6) Operations on representations
We now discuss some operations on group representations; they can be used to enlarge the supply
of examples, once a single interesting representation of a group is known. We have already met
the direct sum of two representations in Lecture 2; however, that cannot be used to produce
new irreducibles.

5.7 Definition. The dual representation of V is the representation ρ∗ on the dual vector space
V ∗ := Hom(V ; C) of linear maps V → C defined by ρ∗(g)(L) = L ◦ ρ(g)−1.

That is, a linear map L : V → C is mapped to the linear map ρ∗(g)(L) sending v to L
(
ρ(g)−1(v)

)
.

Note how this definition preserves the duality pairing between V and V ∗,

L(v) = ρ∗(g)(L) (ρ(g)(v)) .

There is actually little choice in the matter, because the more naive option ρ∗(g)(L) = L ◦ ρ(g)
does not, in fact, determine an action of G. The following is left as an exercise.

5.8 Proposition. The dual representation ρ∗ is irreducible if and only if ρ was so.

Exercise. Study duality on irreducible representations of abelian groups.
The dual representation is a special instance of the Hom space of two representations: we can

replace the 1-dimensional space of scalars C, the target space of our linear map, by an arbitrary
representation W .

5.9 Definition. For two vector spaces V,W , Hom(V,W ) will denote the vector space of linear
maps from V to W . If V and W carry linear G-actions ρ and σ, then Hom(V,W ) carries a
natural G-action in which g ∈ G sends φ : V →W to σ(g) ◦ φ ◦ ρ(g)−1.

In the special case W = C with the trivial G-action, we recover the construction of V ∗. Note
also that the invariant vectors in the Hom space are precisely the G-linear maps from V to W .
When V = W , this Hom space and its invariant part are algebras, but of course not in general.

6 Tensor products

We now construct the tensor product of two vector spaces V and W . For simplicity, we will take
them to be finite-dimensional. We give two definitions; the first is more abstract, and contains
all the information you need to work with tensor products, but gives little idea of the true size
of the resulting space. The second is quite concrete, but requires a choice of basis, and in this
way breaks any symmetry we might wish to exploit in the context of group actions.

3A different decomposition of Vk is related to the old one by a G-isomorphism S : W
⊕nk
k → W

⊕nk
k ; but this

G-isomorphism is itself block-decomposable into scalar multiples of Id, so the effect on φ is simply to conjugate
the associated matrix [fpq] by S.

12



6.1 Definition. The tensor product V ⊗k W of two vector spaces V and W over k is the k-
vector space based on elements v ⊗w, labelled by pairs of vectors v ∈ V and w ∈ W , modulo
the following relations, for all k ∈ C, v ∈ V , w ∈W :

(v1 + v2)⊗w = v1 ⊗w + v2 ⊗w;
v ⊗ (w1 + w2) = v ⊗w1 + v ⊗w2;

(k · v)⊗w = v ⊗ (k ·w) = k · (v ⊗w).

In other words, V ⊗W is the quotient of the vector space with basis {v ⊗w} by the subspace
spanned by the differences of left– and right-hand sides in each identity above. When the ground
field is understood, it can be omitted from the notation.

6.2 Proposition. Let {e1, . . . , em} and {f1, . . . , fn} be bases of V and W . Then, {ep⊗ fq}, with
1 ≤ p ≤ m, 1 ≤ q ≤ n, is a vector space basis of V ⊗W .

Proof. First, we show that the vectors ep ⊗ fq span the tensor product V ⊗W . Indeed, for any
v ⊗w, we can express the factors v and w linearly in terms of the basis elements. The tensor
relations then express v⊗w as a linear combination of the ep⊗fq. To check linear independence,
we construct, for each pair (p, q), a linear functional L : V ⊗W → k equal to 1 on ep ⊗ fq and
vanishing on all other er ⊗ fs. This shows that no linear relation can hold among our vectors.

Let ε : V → k and ϕ : W → k be the linear maps which are equal to 1 on ep, resp. fq and
vanish on the other basis vectors. We let L(v ⊗w) = ε(v) · ϕ(w). We note by inspection that
L takes equal values on the two sides of each of the identities in (6.1), and so it descends to a
well- defined linear map on the quotient space V ⊗W . This completes the proof.

The tensor product behaves like a multiplication with respect to the direct sum:

6.3 Proposition. There are natural isomorphisms U⊗(V ⊗W ) ∼= (U⊗V )⊗W , (U⊕V )⊗W ∼=
(U ⊗W )⊕ (V ⊗W )

Proof. “Naturality” means that no choice of basis is required to produce an isomorphism. In-
deed, send u⊗ (v⊗w) to (u⊗v)⊗w for the first map, and (u,v)⊗w to (u⊗w,v⊗w) in the
second, extend by linearity to the spaces and check that the tensor relations (6.1) are preserved
by the maps.

6.4 Definition. The tensor product of two representations ρ on V and σ on W of a group G is
the representation ρ⊗ σ on V ⊗W defined by the condition

(ρ⊗ σ)(g)(v ⊗w) = ρ(g)(v)⊗ σ(g)(w),

and extended to all vectors in V ⊗W by linearity.

By inspection, this construction preserves the linear relations in Def. 6.1, so it does indeed lead
to a linear action of G on the tensor product. We shall write this action in matrix form, using
a basis as in Proposition 6.2, but first let us note a connection between these constructions.

6.5 Proposition. If dimV,dimW < ∞, there is a natural isomorphism of vector spaces (pre-
serving G-actions, if defined) from W ⊗ V ∗ to Hom(V,W ).

Proof. There is a natural map from the first space to the second, defined by sending w ⊗ L ∈
W ⊗V ∗ to the rank one linear map v 7→ w ·L(v). We extend this to all of W ⊗V ∗ by linearity.
Clearly, this preserves the G-actions, as defined earlier, so we just need to check the map is an
isomorphism. In the basis {fi} of W , the dual basis {e∗j} of V ∗ and the basis {fi⊗e∗j} of W ⊗V ∗

constructed in Def. 6.1.ii, we can check that the basis vector fi ⊗ e∗j is sent to the elementary
matrix Eij ; and the latter form a basis of all linear maps from V to W .
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(6.6) The tensor product of two linear maps
Consider two linear operators A ∈ End(V ) and B ∈ End(W ). We define an operator A ⊗ B ∈
End(V ⊗W ) by (A⊗B)(v⊗w) = (Av)⊗ (Bw), extending by linearity to all vectors in V ⊗W .
In bases {ei}, {fk} of V,W , our operators are given by matrices Aij , 1 ≤ i, j ≤ m, and Bkl,
1 ≤ k, l ≤ n. Let us write the matrix form of A⊗B in the basis {ei ⊗ fk} of V ⊗W . Note that
a basis index for V ⊗W is a pair (i, k) with 1 ≤ i ≤ m, 1 ≤ k ≤ n. We have the simple formula

(A⊗B)(i,k)(j,l) = Aij ·Bkl,

which is checked by observing that the application of A⊗B to the basis vector ej ⊗ fl contains
ei ⊗ fk with the advertised coefficient Aij ·Bkl.

Here are some useful properties of A⊗B.

6.7 Proposition. (i) The eigenvalues of A⊗B are λi · µk.
(ii) Tr(A⊗B) = Tr(A)Tr(B).
(iii) det(A⊗B) = det(A)n det(B)m.

Proof. Tr(A ⊗ B) =
∑

i,k(A ⊗ B)(i,k)(i,k) =
∑

i,k AiiBkk =
∑

iAii ·
∑

k Bkk = Tr(A) · Tr(B),
proving part (ii). When A and B are diagonalisable, parts (i) and (iii) are seen as follows.
Choose the {ei}, {fj} to be eigenbases for A,B. Then, A ⊗ B is also diagonal, with entries
λi · µk. This deals with the generic case, because generic matrices are diagonalisable. For any
matrix, we can choose a diagonalisable matrix arbitrarily close-by, and the formulae (i) and (iii)
apply. If you dislike this argument, choose instead bases in which A and B are upper-triangular
(this can always be done), and check that A⊗B is also upper-triangular in the tensor basis.

6.8 Remark. A concrete proof of (iii) can be given using row-reduction. Applied to A and B, this
results in upper-triangular matrices S and T , whose diagonal entries multiply to give the two
determinants. Now, ordering the index pairs (i, k) lexicographically, the matrix A⊗B acquires
a decomposition into blocks of size n× n

A11 ·B A12 ·B · · · A1m ·B
A21 ·B · · · · · · A2m ·B

· · · · · ·
Am1 ·B Am2 ·B · · · Amm ·B


We can apply the row-reduction procedure for A treating the blocks in this matrix as entries;
this results in the matrix [Sij ·B]. Applying now the row-reduction procedure for B to each
block of n consecutive rows results in the matrix [Sij · T ], which is S ⊗ T . Its determinant is∏

i,k SiiTkk = (detS)n ·(detT )m. The statement about eigenvalues follows from the determinant
formula by considering the characteristic polynomial.

7 Examples and complements

The formula for A ⊗ B permits us to write the matrix form of the tensor product of two
representations, in the basis (6.2). However, the matrices involved are often too large to give
any insight. In the following example, we take a closer look at the tensor square V ⊗2 := W ⊗W
of the irreducible 2-dimensional representation of D6; we will see that it decomposes into the
three distinct irreducibles listed in Lecture 5.
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(7.1) Example: Decomposing the tensor square of a representation
Let G = D6. It has the three irreps 1, S,W listed in Lecture 5. It is easy to check that 1⊗S = S,
S ⊗ S = 1. To study W ⊗W , we could use the matrix to write the 4× 4 matrices of ρ⊗ ρ, but
there is a better way to understand what happens.

Under the action of g, W decomposes as a sum L1 ⊕ L2 of eigen-lines. We also call L0 the
line with trivial action of the group C3 generated by g. We get a C3-isomorphism

W ⊗W = (L1 ⊗ L1)⊕ (L2 ⊗ L2)⊕ (L1 ⊗ L2)⊕ (L2 ⊗ L1).

Now, as C3-reps, L1⊗L1
∼= L2, L2⊗L2

∼= L1, L1⊗L2
∼= L0, so our decomposition is isomorphic

to L2 ⊕ L1 ⊕ L0 ⊕ L0. We can also say something about r: since it swaps L1 and L2 in each
factor of the tensor product, we see that, in the last decomposition, it must swap L1 with L2 and
also the two factors of L0 among themselves. We suspect that the first two lines add up to an
isomorphic copy of W ; to confirm this, choose a basis vector e1 in L1, and let e2 = ρ⊗2(e1) ∈ L2.
Because r2 = 1, we see that in this basis of L2 ⊕ L1, G acts by the same matrices as on W .

On the last two summands, G acts trivially, but r swaps the two lines. Choosing a basis of

the form {f , ρ⊗2(f)} leads again to the matrix expression ρ⊗2(r) =
[
0 1
1 0

]
; this diagonalises to

diag[1,−1]. So we recognise here the sum of the trivial representation and the sign representation
S of S3. All in all, we have

W ⊗W ∼= W ⊕ L0 ⊕ S.

The appearance of the ‘new’ irreducible sign representation shows that there cannot be a straight-
forward universal formula for the decomposition of tensor products of irreducibles. One substan-
tial accomplishment of the theory of characters, which we will study next, is a simple calculus
which permits the decomposition of representations into irreducibles.

For your amusement, here is the matrix form of ρ⊗ρ, in a basis matching the decomposition
into lines given earlier. (Note: this is not the lexicographically ordered basis of C2 ⊗ C2.)

ρ⊗2(g) =


ω2 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 1

 ; ρ⊗2(r) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .
(7.2) The symmetric group action on tensor powers
There was no possibility of W ⊗W being irreducible: switching the two factors in the product
gives an action of C2 which commutes with D6, and the ±1 eigenspaces of the action must then
be invariant under D6. The +1-eigenspace, the part of W ⊗W invariant under the switch, is
called the symmetric square, and the (−1)-part is the exterior square. These are special instances
of the following more general decomoposition.

Let V be a representation of G, ρ : G → GL(V ), and let V ⊗n := V ⊗ . . . ⊗ V (n times). If
v1, . . . ,vm is a basis of V , then a basis of V ⊗n is the collection of vectors vk1 ⊗ · · · ⊗vkn , where
the indexes k1, . . . , kn range over {1 · · ·m}n. So V ⊗n has dimension mn.

More generally, any n-tuple of vectors u1, · · · ,un ∈ V defines a vector u1 ⊗ · · · ⊗un ∈ V ⊗n.
A general vector in V ⊗n is a linear combination of these.

7.3 Proposition. The symmetric group acts on V ⊗n by permuting the factors: σ ∈ Sn sends
u1 ⊗ · · · ⊗ un to uσ(1) ⊗ · · · ⊗ uσ(n).

Proof. This prescription defines a permutation action on our standard basis vectors, which
extends by linearity to the entire space. By expressing a general u1 ⊗ · · · ⊗ un in terms of the
standard basis vectors, we can check that σ maps it to uσ(1) ⊗ · · · ⊗ uσ(n), as claimed.
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7.4 Proposition. Setting ρ⊗n(g)(u1 ⊗ · · · ⊗ un) = ρ(g)(u1)⊗ · · · ⊗ ρ(g)(un) and extending by
linearity defines an action of G on V ⊗n, which commutes with the action of Sn.

Proof. Assuming this defines an action, commutation with Sn is clear, as applying ρ⊗n(g) before
or after a permutation of the factors has the same effect. We can see that we get an action from
the first (abstract) definition of the tensor product: ρ⊗n(g) certainly defines an action on the
(huge) vector space based on all the symbols u1 ⊗ · · · ⊗ un, and this action preserves the linear
relations defining V ⊗n; so it descends to a well-defined linear operator on the latter.

7.5 Corollary. Every Sn-isotypical component of V ⊗n is a G-sub-representation.

indeed, since ρ⊗n(g) commutes with Sn, it must preserve the canonical decomposition of V ⊗n

under Sn (proved in Lecture 4).
Recall two familiar representations of the symmetric group, the trivial 1-dimensional rep-

resentation 1 and the sign representation ε : Sn → {±1} (defined by declaring that every
transposition goes to −1). The two corresponding blocks in V ⊗n are called SymnV , the sym-
metric powers, and ΛnV , the exterior or alternating powers of V . They are also called the
invariant/anti-invariant subspaces, or the symmetric/anti-symmetric parts of V ⊗n.

7.6 Proposition. Let P± be the following linear self-maps on V ⊗n,

u1 ⊗ · · · ⊗ un 7→


1
n!

∑
σ∈Sn

uσ(1) ⊗ · · · ⊗ uσ(n) for P+

1
n!

∑
σ∈Sn

ε(σ)uσ(1) ⊗ · · · ⊗ uσ(n) for P−

Then:

• Im(P±) ⊂ V ⊗n belongs to the invariant/anti-invariant subspace;

• P± acts as the identity on invariant/anti-invariant vectors;

• P 2
± = P±, and so the two operators are the projections onto SymnV and ΛnV .

Proof. The first part is easy to see: we are averaging the transforms of a vector under the
symmetric group action, so the result is clearly invariant (or anti-invariant, when the sign is
inserted). The second part is obvious, and the third follows from the first two.

7.7 Proposition (Basis for SymnV,ΛnV ). If {v1, . . . ,vm} is a basis for V , then:
a basis for SymnV is{

1
n!

∑
σ∈Sn

vkσ(1)
⊗ · · · ⊗ vkσ(n)

}
, as 1 ≤ k1 ≤ · · · ≤ kn ≤ m,

and a basis for ΛnV is{
1
n!

∑
σ∈Sn

ε(σ)vkσ(1)
⊗ · · · ⊗ vkσ(n)

}
, as 1 ≤ k1 < · · · < kn ≤ m.

Proof. (Sketch) The previous proposition and our basis for V ⊗n make it clear that the vectors
above span Symn and Λn, if we range over all choices of ki. However, an out-of-order collection
of ki can be ordered by a permutation, resulting in the same basis vector (up to a sign, in the
alternating case). So the out-of-order indexes merely repeat some of the basis vectors. Also, in
the alternating case, the sum is zero as soon as two indexes have equal values. Finally, distinct
sets of indexes ki lead to linear combinations of disjoint sets of standard basis vectors in V ⊗n,
which shows the linear independence of our collections.
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7.8 Corollary. ΛnV = 0 if n > m. More generally, dim ΛmV = 1 and dim ΛkV =
(
m
k

)
.

Notation: In the symmetric power, we often use u1 · . . . · un to denote the symmetrised vectors
in Prop. 7.4, while in the exterior power, one uses u1 ∧ . . . ∧ un.

8 The character of a representation

We now turn to the core results of the course, the character theory of group representations.
This allows an effective calculus with group representations, including their tensor products,
and their decomposition into irreducibles.

We want to attach invariants to a representation ρ of a finite group G on V . The matrix
coefficients of ρ(g) are basis-dependent, hence not true invariants. Observe, however, that g
generates a finite cyclic subgroup of G; this implies the following (see Lecture 2).

8.1 Proposition. If G and dimV are finite, then every ρ(g) is diagonalisable.

More precisely, all eigenvalues of ρ(g) will be roots of unity of orders dividing that of G. (Apply
Lagrange’s theorem to the cyclic subgroup generated by g.)

To each g ∈ G, we can assign its eigenvalues on V , up to order. Numerical invariants
result from the elementary symmetric functions of these eigenvalues, which you also know as
the coefficients of the characteristic polynomial detV [λ− ρ(g)]. Especially meaningful are

• the constant term, det ρ(g) (up to sign);

• the sub-leading term, Trρ(g) (up to sign).

The following is clear from multiplicativity of the determinant:

8.2 Proposition. The map g 7→ detV ρ(g) ∈ C defines a 1-dimensional representation of G.

This is a nice, but “weak” invariant. For instance, you may know that the alternating
group A5 is simple, that is, it has no proper normal subgroups. Because it is not abelian,
any homomorphism to C must be trivial, so the determinant of any of its representations is
1. Even for abelian groups, the determinant is too weak to distinguish isomorphism classes of
representations. The winner turns out to be the other interesting invariant.

8.3 Definition. The character of the representation ρ is the complex-valued function on G
defined by χρ(g) := TrV (ρ(g)).

The Big Theorem of the course is that this is a complete invariant, in the sense that it
determines ρ up to isomorphism.

For a representation ρ : G→ GL(V ), we have defined χV : G→ C by χV (g) = TrV (ρ(g)).

8.4 Theorem (First properties).

1. χV is conjugation-invariant, χV (hgh−1) = χV (g),∀g, h ∈ G;

2. χV (1) = dimV ;

3. χV (g−1) = χV (g);

4. For two representations V,W , χV⊕W = χV + χW , and χV⊗W = χV · χW ;

5. For the dual representation V ∗, χV ∗(g) = χV (g−1).

17



Proof. Parts (1) and (2) are clear. For part (3), choose an invariant inner product on V ; unitarity
of ρ(g) implies that ρ(g−1) = ρ(g)−1 = ρ(g)

T
, whence (3) follows by taking the trace.4 Part (4)

is clear from

Tr
[
A 0
0 B

]
= TrA+ TrB, and ρV⊕W =

[
ρV 0
0 ρW

]
.

The product formula follows form the identity Tr(A⊗B) = TrA · TrB from Lecture 6. Finally,
Part (5) follows form the fact that the action of g on a linear map L ∈ Hom(V ; C) = V ∗ is
composition with ρ(g)−1 (Lecture 5).

8.5 Remark. conjugation-invariant functions on G are also called central functions or class func-
tions. Their value at a group element g depends only on the conjugacy class of g. We can
therefore view them as functions on the set of conjugacy classes.

(8.6) The representation ring
We can rewrite property (4) more professionally by introducing an algebraic construct.

8.7 Definition. The representation ring RG of the finite group G is the free abelian group
based on the set of isomorphism classes of irreducible representations of G, with multiplication
reflecting the tensor product decomposition of irreducibles:

[V ] · [W ] =
∑

k
nk · [Vk] iff V ⊗W ∼=

⊕
k
V ⊕nk

k ,

where we write [V ] for the conjugacy class of an irreducible representation V , and the tensor
product V ⊗W has been decomposed into irreducibles Vk, with multiplicities nk.

Thus defined, the representation ring is associative and commutative, with identity the trivial
1-dimensional representation: [C] · [W ] = [W ] for any W , because C⊗W ∼= W .

Example: G = Cn, the cyclic group of order n
Our irreducibles are L0, . . . , Ln−1, where the generator of Cn acts on Lk as exp

(
2πik

n

)
. We

have Lp ⊗ Lq
∼= Lp+q, subscripts being taken modulo n. It follows that RCn

∼= Z[X]/(Xn − 1),
identifying Lk with Xk.

The professional restatement of property (4) in Theorem 8.4 is the following.

8.8 Proposition. The character is a ring homomorphism from RG to the class functions on
G. It takes the involution V � V ∗ to complex conjugation.

Later, we shall return to this homomorphism and list some other good properties.

(8.9) Orthogonality of characters
For two complex functions ϕ,ψ on G, we let

〈ϕ|ψ〉 :=
1
|G|

∑
g∈G

ϕ(g) · ψ(g).

In particular, this defines an inner product on class functions ϕ,ψ, where we sum over conjugacy
classes C ⊂ G:

〈ϕ|ψ〉 =
1
|G|

∑
|C| · ϕ(C)ψ(C).

We are now ready for the first part of our main theorem. There will be a complement in the
next lecture.

4For an alternative argument, recall that the eigenvalues of ρ(g) are roots of unity, and those of ρ(g)−1 will be
their inverses; but these are also their conjugates. Recall now that the trace is the sum of the eigenvalues.
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8.10 Theorem (Orthogonality of characters).

1. If V is irreducible, then ‖χV ‖2 = 1.

2. If V,W are irreducible and not isomorphic, then 〈χV |χW 〉 = 0.

Before proving the theorem, let us list some consequences to illustrate its power.

8.11 Corollary. The number of times an irreducible representation V appears in an irreducible
decomposition of some W is 〈χV |χW 〉.

8.12 Corollary. The above number (called the multiplicity of V in W ) is independent of the
irreducible decomposition

We had already proved this in Lecture 4, but we now have a second proof.

8.13 Corollary. Two representations are isomorphic iff they have the same character.

(Use complete reducibility and the first corollary above).

8.14 Corollary. The multiplicity of the trivial representation in W is 1
|G|
∑

g∈G χW (g).

8.15 Corollary (Irreducibility criterion). V is irreducible iff ‖χV ‖2 = 1.

Proof. Decompose V into irreducibles as
⊕

k V
⊕nk
k ; then, χV =

∑
k nk ·χk, and ‖χV ‖2 =

∑
k n

2
k.

So ‖χV ‖2 = 1 iff all the nk’s vanish but one, whose value must be 1.

In preparation for the proof of orthogonality, we establish the following Lemma. For two
representations V,W of G and any linear map φ : V →W , define

φ0 =
1
|G|

∑
g∈G

ρW (g) ◦ φ ◦ ρV (g)−1.

8.16 Lemma.

1. φ0 intertwines the actions G.

2. If V and W are irreducible and not isomorphic, then φ0 = 0.

3. If V = W and ρV = ρW , then φ0 =
Trφ

dimV
· Id.

Proof. For part (1), we just examine the result of conjugating by h ∈ G:

ρW (h) ◦ φ0 ◦ ρV (h)−1 =
1
|G|

∑
g∈G

ρW (h)ρW (g) ◦ φ ◦ ρV (g)−1ρV (h)−1

=
1
|G|

∑
g∈G

ρW (hg) ◦ φ ◦ ρV (hg)−1 =
1
|G|

∑
g∈G

ρW (g) ◦ φ ◦ ρV (g)−1 = φ0.

Part (2) now follows from Schur’s lemma. For part (3), Schur’s lemma again tells us that φ0 is
a scalar; to find it, it suffices to take the trace over V : then, φ0 = Tr(φ0)/dimV . But we have

Tr(φ0) =
1
|G|

∑
g∈G

Tr
(
ρV (g) ◦ φ ◦ ρV (g)−1

)
= Tr(φ),

as claimed.
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Proof of orthogonality. Choose invariant inner products on V,W and orthonormal bases {vi}
and {wj} for the two spaces. When V = W we shall use the same inner product and basis in
both. We shall use the “bra·ket” vector notation explained in the handout. Then we have

〈χW |χV 〉 =
1
|G|

∑
g∈G

χ̄W (g)χV (g) =
1
|G|

∑
g∈G

χW (g−1)χV (g)

=
1
|G|

∑
i,j

∑
g∈G

〈wi|ρW (g)−1|wi〉〈vj |ρV (g)|vj〉.

We now interpret each summand as follows. Recall first that |wi〉〈vj | designates the linear map
V →W which sends a vector v to the vector wi·〈vj |v〉. The product 〈wi|ρW (g)−1|wi〉〈vj |ρV (g)|vj〉
is then interpretable as the result of applying the linear map ρW (g)−1 ◦ |wi〉〈vj | ◦ ρV (g) to the
vector |vj〉, and then taking dot product with wj .

Fix now i and j and sum over g ∈ G. Lemma 8.16 then shows that the sum of linear maps

ρW (g)−1 ◦ |wi〉〈vj | ◦ ρV (g) =
{

0 if V � W,
Tr (|wi〉〈vj |) /dimV if ρV = ρW .

(8.17)

In the first case, summing over i, j still leads to zero, and we have proved that χV ⊥ χW . In the
second case,

Tr (|wi〉〈vj |) =
{

1 if i = j,
0 otherwise,

and summing over i, j leads to a factor of dimV , cancelling the denominator in the second line
of (8.17) and completing our proof.

8.18 Remark. The inner product of characters can be defined over any ground field k of charac-
teristic not dividing |G|, by using χ(g−1) in lieu of χ(g). We have used Schur’s Lemma over C
in establishing Part (3) of Lemma 8.16, although not for Parts 1 and 2. Hence, the orthogonal-
ity of characters of non-isomorphic irreducibles holds over any such field k, but orthonormality
‖χ‖2 = 1 can fail if k is not algebraically closed. The value of the square depends on the
decomposition of the representation in the algebraic closure k̄. This can be determined from
the division algebra DV = EndG

k (V ) and the Galois theory of its centre, which will be a finite
extension field of k. See, for instance, Serre’s book for more detail.

(8.19) The representation ring again
We defined the representation ring RG of G as the free abelian group based on the isomorphism
classes of irreducible representations of G. Using complete reducibility, we can identify the linear
combinations of these basis elements with non-negative coefficients with isomorphism classes of
G-representations: we simply send a representation

⊕
i V

⊕ni
i , decomposed into irreducibles, to

the linear combination
∑

i ni[Vi] ∈ RG (the bracket denotes the isomorphism class). General
elements of RG are sometimes called virtual representations of G. We defined the multiplication
in RG using the tensor product of representations. We sometimes denote the product by ⊗, to
remember its origin. The one-dimensional trivial representation 1 is the unit.

We then defined the character χV of a representation ρ on V to be the complex-valued
function on G with χV (g) = TrV ρ(g), the operator trace in the representation ρ. This function
is conjugation-invariant, or a class function on G. We denote the space of complex class functions
on G by C[G]G. By linearity, χ becomes a map χ : RG → C[G]G. We then checked that

• χV⊕W = χV + χW , χV⊗W = χV · χW . Thus, χ : RG → C[G]G is a ring homomorphism.

• Duality corresponds to complex conjugation: χ(V ∗) = χ̄V .
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• The linear functional Inv : RG → Z, sending a virtual representation to the multiplicity
(=coefficient) of the trivial representation 1 corresponds to averaging over G:

Inv(V ) =
1
|G|

∑
g∈G

χV (g).

• We can define a positive definite inner product on RG by 〈V |W 〉 := Inv(V ∗ ⊗W ). This
corresponds to the obvious inner product on characters, 1

|G|
∑

g∈G χ̄V (g)χW (g).

8.20 Remark. The structures detailed above for RG is that of a Frobenius ring with involution.
(In a ring without involution, we would just require that the bilinear pairing V×W 7→ Inv(V⊗W )
should be non-degenerate). Similarly, C[G]G is a complex Frobenius algebra with involution,
and we are saying that the character χ is a homomorphism of such structures. It fails to be an
isomorphism “only in the obvious way”: the two rings share a basis of irreducible representations
(resp. characters), but the RG coefficients are integral, not complex.

9 The Regular Representation

Recall that the regular representation of G has basis {eg}, labelled by g ∈ G; we let G permute
the basis vectors according to its left action, λ(h)(eg) = ehg. This defines a linear action on the
span of the eg.

We can identify the span of the eg with the space C[G] of complex functions on G, by
matching eg with the function sending g to 1 ∈ C and all other group elements to zero. Under
this correspondence, elements h ∈ G act (“on the left”) on C[G], by sending the function ϕ to
the function λ(h)(ϕ)(g) := ϕ(h−1g).

We can see that the character of the regular representation is

χreg(g) =
{
|G| if g = 1
0 otherwise

in particular, ‖χreg‖2 = |G|2/|G| = |G|, so this is far from irreducible. Indeed, every irreducible
representation appears in the regular representation, as the following proposition shows.

9.1 Proposition. The multiplicity of any irreducible representation in the regular representation
equals its dimension.

Proof. 〈χV |χreg〉 = 1
|G|χV (1)χreg(1) = χV (1) = dimV.

For instance, the trivial representation appears exactly once, which we can also confirm directly:
the only translation-invariant functions on G are constant.

9.2 Proposition.
∑

V dim2 V = |G|, the sum ranging over all irreducible isomorphism classes.

Proof. From χreg =
∑

dimV · χV we get ‖χreg‖2 =
∑

dim2 V , as desired.

We now proceed to complete our main orthogonality theorem.

9.3 Theorem (Completeness of characters). The irreducible characters form a basis for
the space of complex class functions.

Thus, they form an orthonormal basis for that space. The proof consists in showing that if
a class function ϕ is orthogonal to every irreducible character, then its value at every group
element is zero. For this, we need the following.
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Construction. To every function ϕ : G→ C, and to every representation (V, ρ) of G, we assign
the following linear self-map ρ(ϕ) of V :

ρ(ϕ) =
∑
g∈G

ϕ(g)ρ(g).

We note, by applying ρ(h) (h ∈ G) and relabelling the sum, that ρ(h)ρ(ϕ) = ρ (λ(h)ϕ).

9.4 Lemma. ϕ is a class function iff ρ(ϕ) commutes with G, in every representation V .

Proof. If ϕ is a class function, then ϕ(h−1gh) = ϕ(g) for all g, h and so

ρ(h)ρ(ϕ)ρ(h−1) =
∑
g∈G

ϕ(g)ρ(hgh−1) =
∑
k∈G

ϕ(h−1kh)ρ(k) =
∑
k∈G

ϕ(k)ρ(k).

In the other direction, let V be the regular representation; then ρ(ϕ)(e1) =
∑

g∈G ϕ(g)eg, and

λ(h)ρ(ϕ)(e1) =
∑
g∈G

ϕ(g)ehg =
∑
g∈G

ϕ(h−1g)eg, whereas

ρ(ϕ)λ(h)(e1) = ρ(ϕ)(eh) =
∑
g∈G

ϕ(g)egh =
∑
g∈G

ϕ(gh−1)eg;

equating the two shows that ϕ(h−1g) = ϕ(gh−1), as claimed.

When ϕ is a class function and V is irreducible, Schur’s Lemma and the previous result show
that ρ(ϕ) is a scalar. To find it, we compute the trace:

Tr [ρ(ϕ)] =
∑
g∈G

ϕ(g)χV (g) = |G| · 〈χV ∗ |ϕ〉

(recall that χV = χV ∗). We obtain that, when V is irreducible,

ρ(ϕ) =
|G|

dimV
· 〈χV ∗ |ϕ〉 · Id. (9.5)

Proof of Completeness. Assume that the class function ϕ is orthogonal to all irreducible char-
acters. By (9.5), ρ(ϕ) = 0 in every irreducible representation V , hence (by complete reducibil-
ity) also in the regular representation. But, as we saw in the proof of Lemma 9.4, we have
ρ(ϕ)(e1) =

∑
g∈G ϕ(g)eg in the regular representation; so ϕ = 0, as desired.

(9.6) The Group algebra
We now study the regular representation in greater depth. Define a multiplication on C[G] by
setting eg · eh = egh on the basis elements and extending by linearity:

∑
g

ϕgeg ·
∑

h

ψheh =
∑
g,h

ϕgψhegh =
∑

g

(∑
h

ϕgh−1ψh

)
eg.

This is associative and distributive for addition, but it is not commutative unless G was so.
(Associativity follows from the same property in the group.) It contains e1 as the multiplicative
identity, and the copy Ce1 of C commutes with everything. This makes C[G] into a C-algebra.

The group G embeds into the group of multiplicatively invertible elements of C[G] by g 7→ eg.
For this reason, we will often replace eg by g in our notation, and think of elements of C[G] as
linear combinations of group elements, with the obvious multiplication.
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9.7 Proposition. There is a natural bijection between modules over C[G] and complex repre-
sentations of G.

Proof. On each representation (V, ρ) of G, we let the group algebra act in the obvious way,

ρ

(∑
g

ϕg · g

)
(v) =

∑
g

ϕgρ(g)(v).

Conversely, given a C[G]-module M , the action of Ce1 makes it into a complex vector space and
a group action is defined by embedding G inside C[G] as explained above.

We can reformulate the discussion above (perhaps more obscurely) by saying that a group
homomorphism ρ : G → GL(V ) extends naturally to an algebra homomorphism from C[G] to
End(V ); V is a module over End(V ) and the extended homomorphism makes it into a C[G]-
module. Conversely, any such homomorphism defines by restriction a representation of G, from
which the original map can then be recovered by linearity.

Choosing a complete list (up to isomorphism) of irreducible representations V of G gives a
homomorphism of algebras,

⊕ρV : C[G] →
⊕

V
End(V ), ϕ 7→ (ρV (ϕ)) . (9.8)

Now each space End(V ) carries two commuting actions of G: these are left composition with
ρV (g), and right composition with ρV (g)−1. For an alternative realisation, End(V ) is isomorphic
to V ⊗ V ∗ and G acts separately on the two factors. There are also two commuting actions of
G on C[G], by multiplication on the left and on the right, respectively:

(λ(h)ϕ) (g) = ϕ(h−1g), (ρ(h)ϕ) (g) = ϕ(gh).

It is clear from our construction that the two actions of G × G on the left and right sides of
(9.8) correspond, hence our algebra homomorphism is also a map of G×G-representations. The
main result of this subsection is the following much more precise version of Proposition 9.1.

9.9 Theorem. The homomorphism (9.8) is an isomorphism of algebras, and hence of G×G-
representations. In particular, we have an isomorphism of G×G-representations,

C[G] ∼=
⊕

V
V ⊗ V ∗,

with the sum ranging over the irreducible representations of G.

For the proof, we require the following

9.10 Lemma. Let V,W be complex irreducible representations of the finite groups G and H.
Then, V ⊗W is an irreducible representation of G ×H. Moreover, every irrep of G ×H is of
that form.

The reader should be cautioned that the statement can fail if the field is not algebraically closed.
Indeed, the proof uses the orthonormality of characters.

Proof. Direct calculation of the square norm shows that the character χv(g)× χW (h) of G×H
is irreducible. (Homework: do this!). Moreover, I claim that these characters span the class
functions on G×H. Indeed, conjugacy classes in G×H are Cartesian products of classes in the
factors, and we can write every indicator class function in G and H as a linear combination of
characters; so we can write every indicator class function on G ×H as a linear combination of
the χV × χW .
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In particular, it follows that the representation V ⊗V ∗ of G×G is irreducible. Moreover, no
two such reps for distinct V can be isomorphic; indeed, on pairs (g, 1) ∈ G × G, the character
reduces to that of V .

Proof of Theorem 9.8. By dimension-count, it suffices to show that our map ⊕ρV is surjective.
The G × G-structure will be essential for this. Note from our Lemma that the decomposition
S :=

⊕
V V ⊗ V ∗ splits the sum S into pairwise non-isomorphic, irreducible representations.

From the results in Lecture 4, we know that any G × G-map into S must be block-diagonal
for the isotypical decompositions. In particular, if a map surjects onto each factor separately,
it surjects onto the sum S. Since the summands are irreducible, it suffices then to show that
each projection to End(V ) is non-zero. But the group identity e1 maps to the identity in each
End(V ).

9.11 Remark. (i) It can be shown that the inverse map to ⊕ρV assigns to φ ∈ End(V ) the
function g 7→ TrV (ρV (g)φ)/dimV . (Optional Homework.)
(ii) Schur’s Lemma ensures that the invariants on the right-hand side for the action of the
diagonal copy G ⊂ G×G are the multiples of the identity in each summand. On the left side,
we get the conjugation-invariant functions, or class functions.

10 The character table

In view of our theorem about completeness and orthogonality of characters, the goal of complex
representation theory for a finite group is to produce the character table. This is the square
matrix whose rows are labelled by the irreducible characters, and whose columns are labelled
by the conjugacy classes in the group. The entries in the table are the values of the characters.

A representation can be regarded as “known” as soon as its character is known. Indeed,
one can extract the irreducible multiplicities from the dot products with the rows of the char-
acter table. You will see in the homework (Q. 2.5) that you can even construct the isotypical
decomposition of your representation, once the irreducible characters are known.

Orthonormality of characters implies a certain orthonormality of the rows of the character
table, when viewed as a matrix A. “A certain” reflects to the fact that the inner product between
characters is not the dot product of the rows; rather, the column of a class C must be weighed
by a factor |C|/|G| in the dot product (as the sum goes over group elements and not conjugacy
classes). In other words, if B is the matrix obtained from A by multiplying each column by√
|C|/|G|, then the orthonormality relations imply that B is a unitary matrix. Orthonormality

of its columns leads to the

10.1 Proposition (The second orthogonality relations). For any conjugacy classes C,C ′,
we have, summing over the irreducible characters χ of G,∑

χ

χ(C) · χ(C ′) =

{
|G|/|C| if C = C ′,

0 otherwise.

10.2 Remark. The orbit-stabiliser theorem, applied to the conjugation action of G on itself and
some element c ∈ C, shows that the prefactor |G|/|C| is the order of ZG(c), the centraliser of c
in G (the subgroup of G-elements commuting with c).
As a reformulation, we can express the indicator function EC of a conjugacy class C ⊂ G in
terms of characters:

EC(g) =
|C|
|G|

∑
χ

χ(C) · χ(g).

Note that the coefficients need not be integral, so the indicator function of a conjugacy class is
not the character of a representation.
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(10.3) Example: The cyclic group Cn of order n
Call g a generator, and let Lk be the one-dimensional representation where g acts as ωk, where
ω = exp

(
2πi
n

)
. Then we know that L0, . . . , Ln−1 are all the irreducibles and the character table

is the following:
{1} {g} . . . {gq} . . .

1 1 1 . . . 1 . . .
L0 1 ω . . . ωq . . .
...

...
... . . .

... . . .
Lp 1 ωp . . . ωpq . . .
...

...
... . . .

...

Moving on to D6, for which we had found the one-dimensional irreducibles 1, S and the
2-dimensional irreducible V , we note that 1 + 1 + 22 = 6 so there are no other irreducibles. We
thus expect 3 conjugacy classes and, indeed, we find {1}, {g, g2}, {r, rg, rg2}, the three reflections
being all conjugate (g−1rg = rg2, etc). From our matrix construction of the representation we
fill in the entries of the character table:

{1} {g, g2} {rg, . . .}
1 1 1 1
S 1 1 −1
V 2 −1 0

Let us check one of the orthogonality relations: χ2
V = (22 + 12)/6 = 5/6, which does not match

the theorem very well; that is, of course, because we forgot to weigh the conjugacy classes by
their size. It is helpful to make a note of the weights somewhere in the character table. The
correct computation is χ2

V = (22 + 2 · 12)/6 = 1.
The general dihedral group D2n works very similarly, but there is a distinction, according

to the parity of n. Let us first take n = 2m + 1, odd, and let ω = exp(2πi/n). We can
again see the trivial and sign representations 1 and S; additionally, we have m two-dimensional
representations Vk, labelled by 0 < k ≤ m, in which the generator g of the cyclic subgroup Cn

acts as the diagonal matrix with entries ωk, ω−k, and the reflection r switches the basis vectors.
Irreducibility of Vk follows as in the case n = 3, but we will of course be able to check that from
the character. The conjugacy classes are {1}, the pairs of opposite rotations {gk, g−k} and all n
reflections, m+2 total, matching the number of representations we found. Here is the character
table:

{1} . . . {gq, g−q} . . . refs.
1 1 . . . 1 . . . 1
S 1 . . . 1 . . . −1
...

... . . .
... . . .

...
Vp 2 . . . 2 cos 2πpq

n . . . 0
...

... . . .
... . . .

...

The case of even n = 2m is slightly different. We can still find the representations 1, S and Vk,
for 1 ≤ k ≤ m, but the sum of squared dimensions 1 + 1 + m · 22 = 2m + 2 is now incorrect.
The problem is explained by observing that, in the representation Vm, g acts as −Id, so g and
r are simultaneously diagonalisable and Vm splits into two lines L+ ⊕ L−, distinguished by the
eigenvalues of r. The sum of squares is now the correct 1 + 1 + 4(m− 1) + 1 + 1 = 4m. Observe
also that there are two conjugacy classes of reflections, {r, rg2, . . . , rgn−2} and {rg, rg3, . . .}.
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The character table of D4m is thus the following (0 < p, q < m):

{1} . . . {gq, g−q} . . . {r, rg2, . . .} {rg, . . .}
1 1 . . . 1 . . . 1 1
S 1 . . . 1 . . . −1 −1
...

... . . .
... . . .

...
Vp 2 . . . 2 cos 2πpq

n . . . 0 0
...

... . . .
... . . .

...
...

L± 1 . . . (−1)q . . . ±1 ∓1

For the Group algebra see Lecture 13.

11 Groups of order pq

Generalising the dihedral croups, we now construct the character table of certain groups of order
pq, where p and q are two primes such that q|(p−1). We define a special group Fp,q by generators
and relations. It can be shown that, other than the cyclic group of the same order, this is the
only group of order pq.

(11.1) The group Fp,q.
A theorem from algebra asserts that the group Z/p× of non-zero residue classes under multi-
plication is cyclic. A proof of this fact can be given as follows: one shows (from the structure
theorem, or directly) that any abelian group of order d, in which the equation xd = 1 has no
more than d solutions, is cyclic. For the group Z/p×, this property follows because Z/p is a
field, so the polynomial cannot split into more than d linear factors.

Let then u be an element of multiplicative order q. (Such elements exist if q|(p − 1), and
there are precisely ϕ(q) = q − 1 of them). Consider the group Fp,q with two generators a, b
satisfying the relations ap = bq = 1, bab−1 = au. When q = 2, we must take u = −1 and we
obtain the dihedral group D2p.

11.2 Proposition. Fp,q has exactly pq elements, namely ambn, for 0 ≤ m < p, 0 ≤ n < q.

Proof. Clearly, these elements exhaust Fp,q, because the commutation relation allows us to move
all b’s to the right of the a’s in any word. To show that there are no further identifications,
the best way is to realise the group concretely. We shall in fact embed Fp,q within the group
GL2(Z/p) of invertible 2 × 2 matrices with coefficients in Z/p. Specifically, we consider the
matrices of the form [

x y
0 1

]
: x a power of u, y arbitrary.

There are pq such matrices and they are closed under multiplication. We realise Fp,q by sending

a 7→
[
1 1
0 1

]
, b 7→

[
u 0
0 1

]
.

11.3 Remark. It can be shown (you’ll do this in the homework) that a different choice of u leads
to an isomorphic group. So omitting u from the notation of Fp,q is in fact justified.

Let now r = (p − 1)/q, and let v1, . . . , vr be a set of representatives for the cosets of Z/p×
modulo the subgroup generated by u. We view the vi as residue classes mod p; thus, {viu

j} is
a complete set of non-zero residue classes mod p, as 1 ≤ i ≤ r and 0 ≤ j < q.

11.4 Proposition. Fp,q has q + r conjugacy classes. A complete list of representatives is
{1, avm , bn}, with 1 ≤ m ≤ r and 1 < n < q.
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Proof. More precisely, the class of avm contains the elements avmui
, 0 ≤ i < q and that of bn

the elements ajbn, 0 ≤ j < p. We obtain the other powers of a by successive b-conjugation—
conjugation by a does not change those elements—and the ajbn by a-conjugation: abna−1 =
a1−un

b, and un 6= 1 if n < q, so 1−un 6= 0 mod p and repeated conjugation produces all powers
of a. Moreover, it is clear that further conjugation by b does not enlarge this set.

(11.5) Representations.
The subgroup generated by a is normal in Fp,q, and the quotient group is cyclic of order q. We
can thus see q 1-dimensional representations of Fp,q, on which a acts trivially, but b acts by
the various roots of unity of order q. We need to find r more representations, whose squared
dimensions should add up to (p − 1)q = rq2. The obvious guess is to look for q-dimensional
representations. In fact, much as we did for the dihedral group, we can find them and spot their
irreducibility without too much effort.

Note that, on any representation, the eigenvalues of a are pth roots of unity, powers of
ω = exp 2πi

p . Assume now that ωk is an eigenvalue, k 6= 0. I claim that the powers of exponent
ku, ku2, . . . kuq−1 are also present among the eigenvalues. Indeed, let v be the ωk-eigenvector;
we have

ρ(a)ρ(b)−1(v) = ρ(b)−1ρ(au)(v) = ρ(b)−1ωku(v) = ωkuρ(b)−1(v),

and so ρ(b)−1(v) is an eigenvector with eigenvalue ωku. Thus, the non-trivial eigenvalues of a
cannot appear in isolation, but rather in the r families {ωviu

j}, in each of which 0 ≤ j < q.
Fixing i, the smallest possible matrix is then

ρi(a) = diag[ωvi , ωviu, . . . , ωviu
q−1

].

Note now that the matrix B which cyclically permutes the standard basis vectors satisfies
Bρi(a)B−1 = ρi(au), so we can set ρi(b) = B to get a q-dimensional representation of Fp,q. This
is irreducible, for we saw that no representation where a 6= 1 can have dimension lower than q.

(11.6) The character table
Let η = exp 2ıi

q . Call Lk the 1-dimensional representation in which b acts as ηk and Vm the
representation ρm above. The character table for Fp,q looks as follows. Note that 0 < k < q,
0 < m ≤ r, 1 ≤ l ≤ r, 0 < n < q, and the sum in the table ranges over 0 ≤ s < q.

1 avl bn

1 1 1 1
Lk 1 1 ηkn

Vm q
∑

s ω
vmvlu

s
0

The orthogonality relations are not completely obvious but require a short calculation. The key
identity is

∑
ωxvmus

= 0, where x mod p is a fixed, non-zero residue and m and s in the sum
range over all possible choices.

12 The alternating group A5

In this lecture we construct the character table of the alternating group A5 of even permutations
on five letters. Unlike the previous examples, we will now exploit the properties of characters in
finding representations and proving their irreducibility.

We start with the conjugacy classes. Recall that every permutation is a product of disjoint
cycles, uniquely up to their order, and that two permutations are conjugate in the symmetric
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group iff they have the same cycle type, meaning the cycle lengths (with their multiplicities).
Thus, a complete set of representatives for the conjugacy classes in S5 is

Id, (12), (12)(34), (123), (123)(45), (1234), (12345),

seven in total. Of these, only Id, (12)(34), (123) and (12345) are in A5.
Now, a conjugacy class in S5 may or may not break up into several classes in A5. The reason

is that we may or may not be able to relate two given permutations in A5 which are conjugate
in A5 by an even permutation. Now the first three permutations in our list all commute with
some transposition. This ensures that we can implement the effect of any conjugation in S5 by
a conjugation in A5: conjugate by the extra transposition if necessary. We do not have such an
argument for the 5-cycle, so there is the possibility that the cycles (12345) and (21345) are not
conjugate in A5. To make sure, we count the size of the conjugacy class by the orbit-stabiliser
theorem. The size of the conjugacy class containing g ∈ G is |G| divided by the order of the
centraliser of g. The centraliser of (12345) in S5 is the cyclic subgroup of order 5 generated by
this cycle, and is therefore the same as the centraliser in A5. So the order of the conjugacy class
in S5 is 24, but in A5 only 12. So our suspicions are confirmed, and there are two classes of
5-cycles in A5.
12.1 Remark. The same orbit-stabiliser argument shows that the conjugacy class in Sn of an
even permutation σ is a single conjugacy class in An precisely when σ commutes with some odd
permutation; else, it breaks up into two classes of equal size .

For use in computations, we note that the orders of the conjugacy classes are 1 for Id, 15 for
(12)(34), 20 for (123) and 12 each for (12345) and (21345). We have, as we should,

1 + 15 + 20 + 12 + 12 = 60 = |A5|.

We now start producing the rows of the character table, listing the conjugacy classes in the
order above. The trivial rep 1 gives the row 1, 1, 1, 1, 1. Next, we observe that A5 acts naturally
on C5 by permuting the basis vectors. This representation is not irreducible; indeed, the line
spanned by the vector e1 + . . . + e5 is invariant. The character χC5 is 5, 1, 2, 0, 0 and its dot
product 〈χC5 |χ1〉 = 5/60 + 1/4 + 2/3 = 1 with the trivial rep shows that 1 appears in C5 with
multiplicity one. The complement V has character χV = 4, 0, 1,−1,−1, whose square norm is

‖χV ‖2 =
16
60

+
1
3

+
1
5

+
1
5

= 1,

showing that V is irreducible.
We seek more representations, and consider for that the tensor square V ⊗2. We already know

this is reducible, because it splits as Sym2V ⊕Λ2V , but we try extract irreducible components.
For this we need the character formulae for Sym2V and Λ2V .

12.2 Proposition. For any g ∈ G,

χSym2V (g) =
[
χV (g)2 + χV (g2)

]
/2,

χΛ2V (g) =
[
χV (g)2 − χV (g2)

]
/2.

Proof. Having fixed g, we choose a basis of V on which g acts diagonally, with eigenvalues
λ1, . . . , λd, repeated as necessary. From our bases of Sym2V,Λ2V , we see that the eigenvalues
of g on the two spaces are λpλq, with 1 ≤ p ≤ q ≤ d on Sym2 and with 1 ≤ p < q ≤ d on Λ2.
Then, the proposition reduces to the obvious identities

2
∑
p≤q

λpλq =
(∑

λp

)2
+
∑

λ2
p,

2
∑
p<q

λpλq =
(∑

λp

)2
−
∑

λ2
p.
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The class function g 7→ χV (g2) is denoted by Ψ2χV . In our case, it is seen to give the values
(4, 4, 1,−1,−1), whereas χ2

V is (16, 0, 1, 1, 1). So our characters are χSym2V = (10, 2, 1, 0, 0)
and χΛ2V = (6,−2, 0, 1, 1). We can see that Sym2V will have a positive dot product with 1;
specifically,

〈χSym2V |χ1〉 =
1
6

+
2
4

+
1
3

= 1,

so Sym2V contains 1 exactly once. We also compute

〈χSym2V |χV 〉 =
4
6

+
1
3

= 1,

showing that V appears once as well. The complement W of 1⊕V has character (5, 1,−1, 0, 0),
with norm-square

‖χW ‖2 =
25
60

+
1
4

+
1
3

= 1,

showing that W is a new, 5-dimensional irreducible representation.
We need two more representations. The squared dimensions we have so far add up to

1 + 42 + 52 = 42, missing 18. The only decomposition into two squares is 32 + 32, so we are
looking for two 3-dimensional ones. With luck, they will both appear in Λ2V . This will happen
precisely if

• ‖χΛ2V ‖2 = 2,

• χΛ2V is orthogonal to the other three characters.

We check the first condition, leaving the second as an exercise:

‖χΛ2V ‖2 =
36
60

+
4
4

+
1
5

+
1
5

= 1 + 1 = 2.

We are left with the problem of decomposing χΛ2V into two irreducible characters. These
must be unit vectors orthogonal to the other three characters. If we were sure the values are
real, there would be a unique solution, discoverable by easy linear algebra. With complex values
allowed, there is a one-parameter family of solutions; but it turns out only one solution will take
the value 3 at the conjugacy class Id, so a bit of work will produce the answer. However, there
is a better way (several, in fact).

One method is to understand Λ2V from the point of view of S5. (In the homework, you
get to check that it is an irreducible representation of S5; this is why this make sense). Notice
that conjugation by your favourite transposition τ defines an automorphism of A5, hence a
permutation of the conjugacy classes. Thereunder, the first three classes stay fixed, but the two
types of 5-cycles get interchanged. Therefore, this automorphism will switch the last two columns
of the character table. Now, the same automorphism also acts on the set of representations,
because the formula

τρ(σ) := ρ(τστ−1)

defines a new representation τρ from any given representation ρ, acting on the same vector space.
It is easy to see that τρ is irreducible iff ρ is so (they will have the same invariant subspaces
in general). So, the same automorphism also permutes the rows of the character table. Now,
the three rows we found have dimensions 1, 4, 5 and are the unique irreducible reps of those
dimensions. So, at most, τ can switch the last two rows; else, it does nothing.

Now, if switching the last two columns did nothing, it would follow that all characters of A5

take equal values on the last two conjugacy classes, contradicting the fact that the characters
span all class functions. So we must be in the first case and τ must switch the last two rows.
But then it follows that the bottom two entries in the first three columns (those not moved by
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τ) are always equal; as we know they sum to χΛ2V , they are (3,−1, 0). For the last two rows
and two columns, swapping the rows must have the same effect as swapping the columns, so the
last 2× 2 block is [

a b
b a

]
;

we have a+ b = 1 and, by orthogonality, ab = −1; whence a, b = 1±
√

5
2 .

All in all, the character table for A5 is the following:

{Id} (12)(34) (123) (12345) (21345)
1 1 1 1 1 1
V 4 0 1 −1 −1
W 5 1 −1 0 0
Λ′ 3 −1 0 a b
Λ′′ 3 −1 0 b a

12.3 Remark. There are two other ways to fill in the last two rows. One is to argue a priori
that the character values are real. This can be done using the little result in Question 2.6.b.
Knowing that, observe that the character value of a 5-cycle in a 3-dimensional representation
must be a sum of three fifth roots of unity. The only real values of such sums are 3 and the two
values a, b above. The value 3 could only be attained if the 5-cycles acted as the identities; but
in that case, they would commute with everything in the group. This is not possible, as A5 is
simple, hence has no normal subgroups, hence is isomorphic to its image under any non-trivial
representation; so any relation holding in the representation would have to hold in the group.
So the only possible character values are a and b and you can easily check that the table above
is the only option compatible with orthogonality.

Another way to fill the last rows, of course, would be to “spot” the representations. They
actually come from the two identifications of A5 with the group of isometries of the icosahedron.
The five-cycles become rotations by multiples of 2π/5, whose traces are seen to be a and b from
the matrix description of these rotations.

13 Integrality in the group algebra

The goal of this section is to study the properties of integral elements in the group algebra,
resulting in the remarkable theorem that the degree of an irreducible representation divides the
order of the group. We recall first the notion of integrality.

13.1 Definition. Let S ⊂ R be a subring of the commutative ring R. An element x ∈ R is
called integral over S if the following equivalent conditions are satisfied:
(a) x satisfies some monic polynomial equation with coefficients in S;
(b) The ring S[x] generated by x over S within R is a finitely generated S-module.
If S = Z, x is simply called integral. An integral element of C is called an algebraic integer.

Recall that an S-module M is finitely generated if it contains elements m1, . . . ,mk such that
every m ∈M is expressible as s1m1 + · · ·+ skmk, for suitable si ∈ S. Both conditions are seen
to be equivalent to the statement that, for some large N , xN is expressible in terms of the xn,
n < N , with coefficients in S. Here are two general facts that we will use.

13.2 Proposition. If x, y ∈ R are both integral over S, then so are x+ y and xy.

Proof. We know that x is integral over S and that y is integral over S[x]. Hence S[x] is a finitely
generated S-module and S[x, y] is a finitely generated S[x]-module. All in all, S[x, y] is a finitely
generated S-module. (The products of one generator for S[x] over S and of S[x, y] over S[x]
give a set of generators of S[x, y] over S.)
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13.3 Proposition. The image of an integral element under any ring homomorphism is integral.

This is clear from the first definition. Finally, we note the following fact about algebraic integers.

13.4 Proposition. Any rational algebraic integer is a ‘genuine’ integer (in Z).

Sketch of proof. Assume that the reduced fraction x = p/q satisfies a monic polynomial equation
of degree n with integer coefficients and get a contradiction by showing that the denominator
qn in the leading term cannot be cancelled by any of the other terms in the sum.

13.5 Remark. The proposition is a special case of Gauss’ Lemma, which says that any monic
factor with rational coefficients of a monic polynomial with integral coefficients must in fact
have integral coefficients.

Our goal is the following

13.6 Theorem. The dimension of any complex irreducible representation of a finite group
divides the order of the group.

Calling G the group and V the representation, we will prove that |G|/dimV is an algebraic
integer. The proposition above will then imply the theorem. Observe the identity

|G|
dimV

=
∑
g∈G

χV (g−1) · χV (g)
dimV

=
∑
C

χV (C)χV (C) · |C|
dimV

;

where the last sum ranges over the conjugacy classes C. The theorem then follows from the
following two propositions.

13.7 Proposition. The values χ(g) of the character of any representation of G are algebraic
integers.

Proof. Indeed, the eigenvalues of ρ(g) are roots of unity.

13.8 Proposition. For any conjugacy class C ⊂ G and irreducible representation V , the number
χV (C) · |C|/dimV is an algebraic integer.

To prove the last proposition, we need to recall the group algebra C[G], the space of formal
linear combinations

∑
ϕg · g of group elements with multiplication prescribed by the group law

and the distributive law. It contains the subspace of class functions. We need to know that this
is a commutative subalgebra; in fact we have the following, more precise

13.9 Proposition. The space of class functions is the centre Z(C[G]) of C[G].

Proof. Class functions are precisely those elements ϕ ∈ C[G] for which λ(g)ϕρ(g)−1 = ϕ, or
λ(g)ϕ = ϕρ(g), in terms of the left and right multiplication actions of G. Rewriting in terms of
the multiplication law in C[G], this says g · ϕ = ϕ · g, so class functions are those commuting
with every g ∈ G. But that is equivalent to their commutation with every element of C[G].

Let now EC ∈ C[G] denote the indicator function of the conjugacy class C ⊂ G. Note that
E{1} is the identity in C[G].

13.10 Proposition.
⊕

C Z ·EC is a subring of Z(C[G]). In particular, every EC is integral in
Z(C[G]).

Proof. Writing EC =
∑

g∈C g makes it clear that a product of two E’s is a sum of group elements
(with integral coefficients). Grouping them by conjugacy class leads to an integral combination
of the other E’s. Integrality of EC follows, because the ring Z[EC ] is a subgroup of the free,
finitely generated abelian group

⊕
C Z · EC , and so it is a finitely generated abelian group as

well.
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Recall now that the group homomorphism ρV : G→ GL(V ) extends by linearity to an algebra
homomorphism ρV : C[G] → End(V ); namely, ρV (ϕ) =

∑
g ϕg · ρV (g). This is compatible with

the conjugation action of G, and so class functions must go to the subalgebra EndG(V ) of
G-invariant endomorphisms. When V is irreducible, the latter is isomorphic to C, by Schur’s
lemma. Since TrV (α · Id) = α dimV , the isomorphism is realised by taking the trace, and
dividing by the dimension. We obtain the following

13.11 Proposition. When V is irreducible, TrV /dimV is an algebra homomorphism:

TrV ( )
dimV

: Z(C[g]) → C,
∑

g
ϕg · g 7→

∑
g
ϕg ·

χV (g)
dimV

.

Applying this homomorphism to EC results in χV (C) |C|
dim V . Propositions 13.3 and 13.10

imply (13.8) and thus our theorem.

14 Induced Representations

The study of A5 illustrates the need for more methods to construct representations. Now, for
any group, we have the regular representation, which contains every irreducible; but there is no
good method to break it up in general. We need some smaller representations.

One tool is suggested by the first of the representations of A5, the permutation representation
C5. In general, whenever G acts on X, it will act linearly on the space C[X] of complex-valued
functions on X. This is called the permutation representation of X. Some of its basic properties
are listed in Q. 2.3. For example, the decomposition X =

∐
Xk into orbits of the G-action

leads to a direct sum decomposition C[X] =
⊕

C[Xk]. So if we are interested in irreducible
representations, we might as well confine ourselves to transitive group actions. In this case, X
can be identified with the space G/H of left cosets of G for some subgroup H (the stabiliser of
some point). You can check that, if G = A5 and H = A4, then C[X] ∼= C5, the permutation
representation studied in the last lecture.

We will generalise this construction. Let then H ⊂ G be a subgroup and ρ : H → GL(W ) a
representation thereof.

14.1 Definition. The induced representation IndG
HW is the subspace of the space of all maps

G→W , with the left action of G on G, which are invariant under the action of H, on the right
on G and simultaneously by ρ on W .

Under the left action of an element k ∈ G, a map ϕ : G→W gets sent to the map g 7→ ϕ(k−1g) ∈
W . The simultaneous action of h ∈ H on G and on W sends it to the map g 7→ ρ(h) (ϕ(gh)).
This makes it clear that the two actions, of G and of H, commute, and so the subspace of
H-invariant maps is a sub-representation of G.

We can write the actions a bit more explicitly by observing that the space of W -valued maps
on G is isomorphic to C[G] ⊗W : using the natural basis eg of functions on G and any basis
{fi} of W , we identify the basis element eg ⊗ fi of C[G] ⊗W with the map taking g ∈ G to fi
and every other group element to zero. In this basis, the left action of k ∈ G sends eg ⊗w to
ekg ⊗w. The right action of h ∈ H sends it to egh−1 ⊗w, whereas the simultaneous action on
the right and on W sends it to ekg ⊗ ρ(h)(w). A general function

∑
g∈G eg ⊗wg ∈ C[G] ⊗W

gets sent by h to ∑
g∈G

egh−1 ⊗ ρ(h)(wg) =
∑
g∈G

eg ⊗ ρ(h)(wgh).

Thus, the H-invariance condition is

ρ(h)(wgh) = wg, ∀h ∈ H. (*)
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Let R ⊂ G be a set of representatives for the cosets G/H. For r ∈ R, let Wr ⊂ IndG
HW be

the subspace of functions supported on rH, that is, the functions vanishing everywhere else.

14.2 Proposition. Each vector space Wr is isomorphic to W , and we have a decomposition,
as a vector space, IndG

HW
∼=
⊕

r Wr.

In particular, dim IndG
HW = |G/H| · dimW .

Proof. For each r, we construct an isomorphism from W to Wr by

w ∈W 7→
∑
h∈H

erh ⊗ ρ(h−1)(w).

Clearly, this function is supported on rH, and, in view of (*), it is H-invariant; moreover,
the same condition makes it clear that every invariant function on rH has this form, for some
w ∈W . Also, every function

∑
g∈G eg ⊗wg can be re-written as∑

r∈R

∑
h∈H

erh ⊗wrh =
∑
r∈R

∑
h∈H

erh ⊗ ρ(h−1)(wr),

in view of the same H-invariance condition. This gives the desired decomposition
⊕

r Wr.

Examples
1. If H = {1} and W is the trivial representation, IndG

HW is the regular representation of G.

2. If H is any subgroup and W is the trivial representation, then IndG
HW

∼= C[G/H]⊗W , the
permutation representation on G/H times the vector space W with the trivial G-action.

3. (This is not obvious) More generally, if the action of H on W extends to an action of the
ambient group G, then IndG

HW
∼= C[G/H]⊗W , with the extended G-action on W .

Let us summarise the basic properties of induction.

14.3 Theorem (Basic Properties).

(i) Ind(W1 ⊕W2) ∼= IndW1 ⊕ IndW2.
(ii) dim IndG

HW = |G/H|dimW .
(iii) IndG

{1}1 is the regular representation of G.
(iv) Let H ⊂ K ⊂ G. Then, IndG

KIndK
HW

∼= IndG
HW .

Proof. Part (i) is obvious from the definition, and we have seen (ii) and (iii). Armed with
sufficient patience, you can check property (iv) from the character formula for the induced
representation that we will give in the next lecture. Here is the proof from first definitions.
IndG

HW is the space of maps fromG toW that are invariant underH. An element of IndG
KIndK

HW
is a map from G into the space of maps from K into W , invariant under K and under H. This
is also a map φ : G×K →W , satisfying

φ(gk′, k) = φ(g, k′k) and φ(g, kh−1) = ρW (h)φ(g, k)

Such a map is determined by its restriction to G×{1}, and the resulting restriction ψ : G→W
satisfies ψ(gh−1) = ρW (ψ)(g, k) for h ∈ H, and as such determines an element of IndG

HW .
Conversely, such a ψ is extended to a φ on all of G×K using the K-invariance condition.

33



15 Induced characters and Frobenius Reciprocity

(15.1) Character formula for IndG
HW .

Induction is used to construct new representations, in the hope of producing irreducibles. It is
quite rare that an induced rep will be irreducible (but we will give a useful criterion for that,
due to Mackey); so we have to extract the ‘known’ irreducibles with the correct multiplicities.
The usual method to calculate multiplicities involves characters, so we need a character formula
for the induced representation.

We begin with a procedure which assigns to any class function on H a class function on
G. The obvious extension by zero is usually not a class function—the complement of H in G is
usually not a union of conjugacy classes. The most natural fix would be to take the transforms of
the extended function under conjugation by all elements of G, and add them up. This, however,
is a bit redundant, because many of these conjugates coincide:

15.2 Lemma. If ϕ is a class function on H, extended by zero to all of G, and x ∈ G is fixed,
then the “conjugate function” g ∈ G 7→ ϕ(x−1gx) depends only on the coset xH.

Proof. Indeed, ϕ(h−1x−1gxh) = ϕ(x−1gx), because ϕ was invariant under conjugation in H.

This justifies the following; recall that R ⊂ G is a system of representatives for the cosets G/H.

15.3 Definition. Let ϕ be a class function on H. The induced function IndG
H(ϕ) is the class

function on G given by

IndG
H(ϕ)(g) =

∑
r∈R

ϕ(r−1gr) =
1
|H|

∑
x∈G

ϕ(x−1gx),

where we declare ϕ to be zero at the points of G \H.

The sum thus ranges over those r for which r−1gr ∈ H. We are ready for the main result.

15.4 Theorem. The character of the induced representation IndG
HW is IndG

H(χW ).

Proof. Recall from the previous lecture that we can decompose IndW as

IndG
HW =

⊕
r∈R

Wr, (15.5)

where Wr
∼= W as a vector space. Moreover, as each Wr consists of the functions supported

only on the coset rH, the action of G on IndW permutes the summands, in accordance to the
action of G on the left cosets G/H.

We want the trace of the action of g ∈ G. We can confine ourselves to the summands in
(15.5) which are preserved by g; the others will contribute purely off-diagonal blocks to the
action. Now, grH = rH iff r−1gr = k ∈ H. For each such r, we need the trace of g on Wr.
Now the isomorphism W ∼= Wr was defined by

w ∈W 7→
∑

h∈H
erh ⊗ h−1w,

which transforms under g to give

g
∑
h∈H

erh ⊗ h−1w =
∑
h∈H

egrh ⊗ h−1w =
∑
h∈H

erkh ⊗ h−1w =
∑
h∈H

erh ⊗ h−1kw,

and so the action of g on Wr corresponds, under this isomorphism, to the action of k = r−1gr
on W , and so the block Wr contributes χW (r−1gr) to the trace of g. Summing over the relevant
r gives our theorem.
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(15.6) Frobenius Reciprocity
Surprisingly, one can compute multiplicities of G-irreducibles in IndW which does not require
knowledge of its character on G, but only the character of W in H. The practical advantage
is that a dot product of characters on G, involving one induced rep, is reduced to one on H.
This is the content of the Frobenius reciprocity theorem below. To state it nicely, we introduce
some notation. Write ResH

GV , or just ResV , when regarding a G-representation V merely as
a representation of the subgroup H. (ResV is the “restricted” representation). For two G-
representations U, V , let

〈U |V 〉G = 〈χU |χV 〉;

recall that this is also the dimension of the space HomG(U, V ) of G-invariant linear maps.
(Check it by decomposing into irreducibles.) Because the isomorphism Hom(U, V ) ∼= V ⊗ U∗

is compatible with the actions of G, the same number is also the dimension of the subspace
(V ⊗ U∗)G ⊂ V ⊗ U∗ of G-invariant vectors.

15.7 Theorem (Frobenius Reciprocity). 〈V |IndG
HW 〉G = 〈ResH

GV |W 〉H .

15.8 Remark. Viewing the new 〈 | 〉G as an inner product between representations, the theorem
says, in more abstract language, that IndG

H and ResH
G are adjoint functors.

15.9 Corollary. The multiplicity of the G-irreducible representation V in the induced represen-
tation IndG

HW is equal to the multiplicity of the irreducible H-representation W in the restricted
representation ResH

GV .

Proof of Frobenius reciprocity. One can check directly (you will do so in the homework) that the
linear map Ind, from class functions on H to class functions on G, is the hermitian adjoint of the
restriction of class functions from G to H; the Reciprocity formula then follows from Theorem
15.4. Here, we give a proof which applies more generally (even when character theory does not).

We must show that dim HomG(V ; IndW ) = dim HomH(V ;W ). We prove this by construct-
ing a natural isomorphism between the two spaces (independent of arbitrary choices),

HomG(V ; IndW ) ∼= HomH(V ;W ). (*)

The chain of isomorphisms leading to (*) is the following:

HomG(V ; IndW ) = HomG
(
V ; (C[G]⊗W )H

)
= HomG×H(V ; C[G]⊗W )

= (C[G]⊗Hom(V ;W ))G×H = HomH(V ;W ),

where the superscripts G,H indicate that we take the subspaces of invariant vectors under the
respective groups, and it remains to explain the group actions and the isomorphisms.

The first step is the definition of the induced representation. Now, because the G-action
(on V and on the left on C[G]) commutes with the H-action (on the right on C[G] and on W ),
we get an action of G ×H on Hom(V ; C[G] ⊗W ), and the invariant vectors under G ×H are
precisely those invariant under both G and H; which accounts for our second isomorphism. In
the third step, we have used the isomorphism of vector spaces

Hom(V ; C[G]⊗W ) = C[G]⊗Hom(V ;W ),

which equates the linear maps from V to W -valued functions on G with the functions on G with
values in Hom(V ;W ): indeed, both sides are maps from G×V to W which are linear in V . We
keep note of the fact that G acts on the left on C[G] and on V , while H acts on the right on
C[G] and on W .
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The last step gets rid of G altogether. It is explained by the fact that a map on G with values
anywhere which is invariant under left multiplication of G is completely determined by its value
at the identity; and this value can be prescribed without constraint. To be more precise, let
φ : G×V →W be a map linear on V , and denote by φg ∈ Hom(V,W ) its value at G. Invariance
under g forces us to have φgk = φk ◦ ρV (g−1), as seen by acting on φ by g and evaluating at
k ∈ G. In particular, φg = φ1 ◦ ρV (g−1). Conversely, for any ψ1 = ψ ∈ Hom(V ;W ), the map on
G sending k to ψk := ψ1 ◦ ρV (k)−1 is invariant, because

ψgk = ψ1 ◦ ρV (gk)−1 = ψ1 ◦ ρV (k)−1ρV (g)−1 = ψk ◦ ρV (g)−1,

as needed for invariance under any g ∈ G.
We have thus shown that sending φ : G → Hom(V ;W ) to φ1 gives a linear isomorphism

from the subspace of G-invariants in C[G]⊗Hom(V ;W ) to Hom(V ;W ). It remains to compare
the H-invariance conditions on the two spaces, to establish the fourth and last isomorphism in
the chain. It turns out, in fact, that the H-action on the first space, on the right on G and on
W , agrees with the H-action on Hom(V,W ), simultaneously on V and on W . Indeed, acting
by h ∈ H on φ results in the map g 7→ ρW (h) ◦ φgh. In particular, 1 goes to ρW (h) ◦ φh. But
we know that φh = φ1 ◦ ρV (h)−1, whence it follows that the transformed map sends 1 ∈ G to
ρW (h) ◦ φ1 ◦ ρV (h)−1. So the effect on φ1 ∈ Hom(V ;W ) is that of the simultaneous action of h
on V and W , as claimed.

16 Mackey theory

The main result of this section describes the restriction to a subgroup K ⊂ G of an induced
representation IndG

HW . No relation is assumed between K and H, but the most useful appli-
cation of this rather technical formula comes in when K = H: in this case, we obtain a neat
irreducibility criterion for IndG

HW . The formulae become much cleaner when H is a normal
subgroup of G, but this plays no role in their proof.

16.1 Definition. The double coset space K\G/H is the set of K ×H-orbits on G, for the left
action of K and the right action of H.

Note that left and right multiplication commute, so we get indeed an action of the product group
K ×H. There are equivalent ways to describe the set, as the set of orbits for the (left) action
of K on the coset space G/H, or the set of orbits for the right action of H on the space K\G.
An important special case is when H = K and is normal in G: in this case, K\G/H equals the
simple coset space G/H. (Why?)

Let S ∈ G be a set of representatives for the double cosets (one point in each orbit); we thus
have G =

∐
sKsH. For each s ∈ S, let

Hs = sHs−1 ∩K.

Then, Hs is a subgroup of K, but it also embeds into H by the homomorphism Hs 3 x 7→ s−1hs.
To see its meaning, note that Hs ⊂ K is the stabiliser of the coset sH under the action of K on
G/H, while the embedding in H identifies Hs with the stabiliser of Ks under the (right) action
of H on K\G.

A representation ρ : H → GL(W ) leads to a representation of Hs on the same space by
ρs(x) = ρ(s−1xs). We write Ws for the space W , when this action of Hs is understood.

16.2 Theorem (Mackey’s Restriction Formula).

ResK
G IndG

H(W ) ∼=
⊕
s∈S

IndK
Hs

(Ws)
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Proof. We have G =
∐

sKsH, and the left K-action and right H-action permute these double
cosets. We can then decompose the space of W -valued functions on G into a sum of functions
supported on each coset. H-invariance of the decomposition means that the invariant subspace
IndG

H(W ) ⊂ C[G]⊗W decomposes accordingly, into the sum of H-invariants in
⊕

s C[KsH]⊗W .
We claim now that the H-invariant part of C[KsH] ⊗W is isomorphic to IndK

Hs
(Ws), as a

representation of K. Let then φ : KsH → W be a map invariant for the action of H (on the
right on KsH, and on W ). Restricting to the subset Ks gives a map ψ : K → W invariant
under the same action of Hs, by setting ψ(k) := φ(ks). But this is a vector in IndK

Hs
(Ws), so we

do get a natural linear map φ 7→ ψ from the first space to the second.
Conversely, let now ψ : K →W represent a vector in the induced representation IndK

Hs
(Ws);

we define a map φ : KsH →W by φ(ksh) := ρ(h)−1ψ(k). If x ∈ H, then

φ(ksh · x−1) = ρ(xh−1)ψ(k) = ρ(x)φ(ksh),

showing that φ is invariant under the action on H (on the right on KsH and simultaneously
on W ). There is a problem, however: the same group element may have several expressions as
ksh, with k ∈ K and h ∈ H, and we must check that the value φ(ksh) is independent of that.
Let ksh = k′sh′; then, k−1k′ = s · h′h−1 · s−1, and so their common value y is in Hs. But then,

φ(ksh) = ρ(h)−1ψ(k) = ρ(h)−1ρ(y)−1ψ(ky) = ρ(yh)−1ψ(kk−1k′) = ρ(h′)−1ψ(k′) = φ(k′sh′),

as needed, where for the second equality we have used invariance of ψ under y ∈ Hs. The maps
φ 7→ ψ and ψ 7→ φ are clearly inverse to each other, completing the proof of the theorem.

16.3 Remark. One can give a computational proof of Mackey’s theorem using the formula for
the character of an induced representation. However, the proof given above applies even when
character theory does not (e.g. when complete reducibility fails).

(16.4) Mackey’s irreducibility criterion
We will now investigate irreducibility of the induced representation IndG

H(W ) by applying
Mackey’s formula to the case K = H.

Note that, when K = H, we have for each s ∈ S two representations of the group Hs =
sHs−1 ∩ H on the space W : ρs defined as above and the restricted representation ResHs

H W .
The two actions stem from the two embeddings of Hs inside H, by s−1-conjugation and by
the natural inclusion, respectively. Call two representations of a group disjoint if they have no
irreducible components in common. This is equivalent to orthogonality of their characters.

16.5 Theorem (Mackey’s Irreducibility Criterion). IndG
HW is irreducible if and only if

(i) W is irreducible
(ii) For each s ∈ S \H, the representations Ws and ResHs

H W are disjoint.

16.6 Remark. The set of representatives S for the double cosets was arbitrary, so we might as
well impose condition (ii) on any g ∈ G \H; but it suffices to check it for g ∈ S.

The criterion becomes especially effective when H is normal in G. In this case, the double
cosets are the same as the simple cosets (left or right). Moreover, sHs−1 = H, so Hs = H for
all s; and the representation Ws of H is irreducible, if W was so. Hence the following

16.7 Corollary. Let H ⊂ G be a normal subgroup. Then, IndG
HW is irreducible iff W is

irreducible and the representations W and Ws are non-isomorphic, for all s ∈ G \H.

Again, it suffices to check the condition on a set of representatives; in fact, it turns out that the
isomorphism class of Wg, for g ∈ G, depends only on the coset gH.

37



Proof of Mackey’s criterion. We have, in the notation 〈U |V 〉 := 〈χU |χV 〉,

〈IndG
HW |IndG

HW 〉G = 〈ResH
G IndG

HW |W 〉H
=
∑

s

〈IndH
Hs
Ws|W 〉H =

∑
s

〈W |IndH
Hs
Ws〉H =

∑
s

〈ResHs
H W |Ws〉Hs .

For the first and last equality, we have used the Frobenius reciprocity formula; the second
equality is Mackey’s formula, while the third uses the fact that the dot product of characters is
an integer (hence real).

Now every term in the final sum is a non-negative integer, so the the answer is 1, as required
by irreducibility, only if all terms but one vanish, and the non-zero term is 1 itself. Now the
choice of representatives S was arbitrary, so we can assume that 1 was chosen to represent the
identity coset HH = H. If so, H1 = H and W1 = W , and the s = 1 term is ‖χW ‖2. So this
is the non-vanishing term, and it must equal 1, and so W must be irreducible; while all other
terms must vanish, which is part (ii) of Mackey’s criterion.

(16.8) Examples
1. If G = D2n, H = Cn and W is the representation Lk with generator eigenvalue exp

(
2πik

n

)
,

the induced representation is Vk. The transform of Lk under reflection is the representation
L−k, and Mackey’s criterion holds whenever exp

(
2πik

n

)
6= exp

(−2πik
n

)
, that is, when k 6=

0, n/2 (when n is even); and indeed, in each of those cases, Vk breaks up into two lines.

2. IfG = S5 andH = A5, Mackey’s criterion fails for the first three irreducible representations
1, V and W , but holds for the two ‘halves’ of Λ2V . So the first three representations
induce reducible ones, but the last two induce irreducible representations. One can check
(by characters, but also directly) that the first three induced representations split as 1⊕S,
V ⊕ (V ⊗ S) and W ⊕ (W ⊗ S), while Λ′ and Λ′′ each induce Λ2V , which is irreducible
under S5. As a matter of fact, this leads to the complete list of irreducibles of S5.

17 Nilpotent groups and p-groups

As an application of induced representations, we now show that for a certain class of groups
(the nilpotent ones) all irreducible representations arise by induction from a 1-dimensional rep-
resentation of an appropriate subgroup. Except for the definition that we are about to give, this
section contains optional material.

17.1 Definition. The group G is solvable if there is a finite chain

G = G(n) ⊃ G(n−1) ⊃ · · · ⊃ G(0) = {1}

of subgroups such that G(k) is normal in G(k+1) and the quotient group G(k+1)/G(k) is abelian.
G is nilpotent if the G(k) are normal in all of G and each G(k+1)/G(k) is central in G/G(k).

(17.2) Examples
(i) Every abelian group is nilpotent.
(ii) The group B of upper-triangular invertible matrices with entries in Z/p is solvable, but
not nilpotent; the subgroups B(k) have 1’s on the diagonal and zeroes on progressively more
super-diagonals.
(iii) The subgroup N ⊂ B of upper-triangular matrices with 1’s on the diagonal is nilpotent.
(iv) Every subgroup and quotient group of a solvable (nilpotent) group is solvable (nilpotent):
just use the chain of intersections with the G(k) or the quotient chain, as appropriate.
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The following proposition underscores the importance of nilpotent groups. Recall that a
p-group is a group whose order is a power of the prime number p.

17.3 Proposition. Every p-group is nilpotent.

Proof. We will show that the centre Z of a p-group G is non-trivial. Since G/Z is also a p-group,
we can repeat the argument and produce the chain in 17.1.

Consider the conjugacy classes in G. Since they are orbits of the conjugation action, the
orbit-stabiliser theorem implies that their orders are powers of p. If 1 was the only central
element, then the order of every other conjugacy class would be 0 (mod p). They would then
add up to 1 (mod p). However, the order of G is 0 (mod p), contradiction.

17.4 Remark. The same argument can be applied to the (linear) action of G on a vector space
over a finite field of characteristic p, and implies that every such action has non-zero invariant
vectors. This has the remarkable implication that the only irreducible representation of a p-group
in characteristic p is the trivial one.

17.5 Theorem. Every irreducible representation of a nilpotent group is induced from a one-
dimensional representation of an appropriate subgroup.

The subgroup will of course depend on the representation. Still, this is rather a good result,
especially for p-groups, whose structure is usually sensible enough that an understanding of all
subgroups is not a hopeless task. The proof will occupy the rest of the lecture and relies on the
following

17.6 Lemma (Clever Lemma). Let G be a finite group, A ⊂ G a normal subgroup and V an
irreducible representation of G. Then, V = IndG

HW for some intermediate group A ⊂ H ⊂ G
and an irreducible representation of H whose restriction to A is isotypical.

Recall that “W is isotypical for A” means that it is a direct sum of many copies of the same
irreducible representation of A. Note that we may have H = G and W = V , if its restriction to
A is already isotypical. We are interested in the special case when A is abelian, in which case
the fact that the irreducible reps are 1-dimensional implies that the isotypical representations
are precisely the scalar ones.

17.7 Corollary. With the same assumptions, if A ⊂ G is abelian, then either its action on V
is scalar, or else V is induced from a proper subgroup H ⊂ G.

Proof of the Clever Lemma. Let V =
⊕

i Vi be the isotypical decomposition of V with respect
to A. If there is a single summand, we take H = G as indicated. Otherwise, observe that the
action of G on V must permute the blocks Vi. Indeed, denoting the action by ρ, choose g ∈ G
and let gρ(a) := ρ(gag−1). Conjugation by g defines an automorphism of the (normal) subgroup
A, which must permute its irreducible characters.

Then, ρ(g) : V → V defines an isomorphism of A-representations, if we let A act via ρ on
the first space and via gρ on the second. Moreover, the same decomposition V =

⊕
i Vi is also

the isotypical decomposition under the action gρ of A. Of course, the irreducible type assigned
to Vi has been changed, according to the action of g-conjugation on characters of A; but the
fact that all irreducible summands within each Vi are isomorphic, and distinct from those in Vj ,
j 6= i, cannot have changed.

It follows that ρ(g) preserves the blocks in the isotypical decomposition; reverting to the
action ρ on the second space, we conclude that ρ(g) permutes the blocks Vi according to its
permutation action on irreducible characters of A.
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Note, moreover, that this permutation action of G is transitive, (if we ignore zero blocks).
Indeed, the sum of blocks within an orbit will be a G-invariant subspace of V , which was assumed
irreducible. It follows that all non-zero blocks have the same dimension.

Choose now a (non-zero) block V0 and let H be its stabiliser within G. From the orbit-
stabiliser theorem, dimV = |G/H| · dimV0. I claim that V ∼= IndG

HV0. Indeed, Frobenius
reciprocity gives

dim HomG(IndG
HV0, V ) = dim HomH(V0, Res

H
GV ) ≥ 1,

the inequality holding because V0 is an H-subrepresentation of V . However, V is irreducible
under G and its dimension equals that of IndG

HV0, so any non-zero G-map between the two
spaces is an isomorphism.

17.8 Lemma (Little Lemma). If G is nilpotent and non-abelian, then it contains a normal,
abelian and non-central subgroup.

Proof. Let Z ⊂ G be the centre and let G′ ⊂ G be the smallest subgroup in the chain (17.1)
not contained in Z. Then, G′/Z is central in G/Z, and so for any g′ ∈ G′, gg′g−1 ∈ g′Z for
any g ∈ G. Thus, any such g′ generates, together with Z, a subgroup of G with the desired
properties.

Proof of Theorem 17.5. Let ρ : G → V be an irreducible representation of the nilpotent group
G. The subgroup ker ρ is normal and G/ ker ρ is also nilpotent. If G/ ker ρ is abelian, then the
irreducible representation V must be one-dimensional and we are done. Else, let A ⊂ G/ ker ρ
be a normal, abelian, non-central subgroup. For a non-central element a ∈ A, ρ(a) cannot be a
scalar, or else it would commute with ρ(g) for any g ∈G, and then ρ(gag−1) = Id for any g, so
gag−1 ∈ ker ρ and then a would be central in G/ ker ρ.

It follows from Corollary 17.7 that there exists a proper subgroup H ⊂ G with a represen-
tation W of H/ ker ρ, such that V is induced from H/ ker ρ to G/ ker ρ. But that is also the
representation IndG

HW . The subgroup H is also nilpotent, and we can repeat the argument until
we find a 1-dimensional W .

(17.9) Example
A non-abelian exampleis the Heisenberg group of upper-triangular 3×3 matrices in Z/p with 1’s
on the diagonal. There are (p − 1) irreducible representations of dimension p, and they are all
induced from 1-dimensional representations of the abelian subgroup of elements of the following
form 1 ∗ ∗

0 1 0
0 0 1


18 Burnside’s paqb theorem

(18.1) Additional comments
Induction from representations of “known” subgroups is an important tool in constructing the
character table of a group. Frobenius’ and Mackey’s results can be used to (attempt to) break
up induced reps into irreducibles. For arbitrary finite groups, there isn’t a result as good as
the one for p-groups — it need not be true that every irreducible representation is induced
from a 1-dimensional one. However, the following theorem of Brauer’s is a good substitute for
that. I refer you to Serre’s book for the proof, which is substantially more involved than that of
Theorem 17.5.

If G is any finite group and |G| = pnm, with m prime to p, then two theorems of Sylow
assert the following:
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1. G contains subgroups of order pn;
2. all these subgroups are conjugate;
3. every p-subgroup of G is contained in one of these.

The subgroups in (1) are called the Sylow p-subgroups of G.
An elementary p-subgroup of G is one which decomposes as a direct product of a cyclic

subgroup and a p-group. Up to conjugation, the elementary subgroups of G are of the form
〈x〉 × S, where x ∈ G and S a subgroup of a fixed Sylow subgroup of the centraliser of x in G.

18.2 Theorem (Brauer). The representation ring of G is spanned over Z by representations
induced from 1-dimensional reps of elementary subgroups. In other words, every irreducible
character is an integral linear combination of characters induced in this way.

Knowing the integral span of characters within the space of class functions determines the
irreducible characters, as the functions of square-norm 1 whose value at 1 ∈ G is positive. So,
in principle, the irreducible characters can be found in finitely many steps, once the structure
of the group is sufficiently well known.

(18.3) Burnside’s theorem
One impressive application of the theory of characters to group theory is the following theorem
of Burnside’s, proved early in the 20th century. It was not given a purely group-theoretic proof
until 1972. Let p, q be prime and a, b arbitrary natural numbers.

18.4 Theorem (Burnside). Every group of order paqb is solvable.

Noting that every subgroup and quotient group of such a group has order pa′qb′ , it suffices to
prove the following

18.5 Proposition. Every group of order paqb 6= p, q contains a non-trivial normal subgroup.

Indeed, we can continue applying the proposition to the normal subgroup and the quotient group,
until we produce a chain where all subquotients have orders p or q (and thus are abelian). Groups
containing no non-trivial normal subgroups are called simple, so we will prove that the order of
a simple group is contains at least three distinct prime factors. The group A5, of order 60, is
simple, so this is the end of this road.

We will keep reformulating the desired property of our groups until we convert it into an
integrality property of characters.

1. Every non-trivial representation of a simple group is faithful.
(Indeed, the kernel must be trivial.)

2. If some group element g 6= 1 acts as a scalar in a representation ρ, then either g is central
or else ρ is not faithful. Either way, the group is not simple.
Indeed, ugu−1 ∈ ker ρ for any u ∈ G.

3. With standard notations, ρ(g) is a scalar iff |χ(g)| = χ(1).
Indeed, χ(g) is a sum of its χ(1) eigenvalues, which are roots of unity. The triangle
inequality for the norm of the sum is strict, unless all eigenvalues agree.

The following two facts now imply Proposition 18.5 and thus Burnside’s theorem.

18.6 Proposition. For any character χ of the finite group G, |χ(g)| = χ(1) if and only if
χ(g)/χ(1) is a non-zero algebraic integer.

18.7 Proposition. If G has order paqb, there exists an irreducible character χ and an element
g such that χ(g)/χ(1) is a non-zero algebraic integer.
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Proof of (18.6). Let d be the dimension of the representation; we have

α :=
χ(g)
χ(1)

=
ω1 + · · ·+ ωd

d
,

for suitable roots of unity ωk. Now, the minimal polynomial of α over Q is

Pα(X) =
∏

β
(X − β)

where β ranges over all distinct transforms of α under the action of the Galois group Γ of the
algebraic closure Q of Q.5 This is because Pα, having rational coefficients, is invariant under the
action of Γ, and so it must admit all the β’s as roots. On the other hand, the product above is
clearly Γ-invariant, hence it has rational coefficients, and has α as a root; so it must agree with
the minimal polynomial.

Gauss’ Lemma asserts that any monic polynomial with integer coefficients is irreducible over
Q as soon as it is so over Z. Therefore, if α is an algebraic integer, then Pα(X) must have
integer coefficients: indeed, being an algebraic integer, α must satisfy some monic equations
with integral coefficients, among which the one of least degree must be irreducible over Q, and
hence must agree with the minimal polynomial Pα.

Now, if α 6= 0, then no transform β can be zero. If so, the product of all β, which is integral,
has modulus 1 or more. However, the Galois transform of a root of unity is also a root of unity,
so every β is an average of roots of unity, and has modulus ≤ 1. We therefore get a contradiction
from algebraic integrality, unless α = 0 or |α| = 1.

Proof of 18.7. We will find a conjugacy class {1} 6= C ⊂ G whose order is a power of p, and an
irreducible character χ, with χ(C) 6= 0 and χ(1) not divisible by p. Assuming that, recall from
Lecture 13 that the number |C| · χ(C)

χ(1) is an algebraic integer. As |C| is a power of p, which does
not divide the denominator, we are tempted to conclude that χ(C)/χ(1) is already an algebraic
integer. This would be clear from the prime factorisation, if χ(C) were an actual integer. As it
is, we must be more careful and argue as follows.

Bézout’s theorem secures the existence of integers m,n such that m|C|+ nχ(1) = 1. Then,

m|C|χ(C)
χ(1)

+ nχ(C) =
χ(C)
χ(1)

,

displaying χ(C)/χ(1) as a sum of algebraic integers.
It remains to find the desired C and χ. Choose a q-Sylow subgroup H ⊂ G; this has non-

trivial centre, as proved in Proposition 17.3. The centraliser of a non-trivial element g ⊂ Z(H)
contains H, and so the conjugacy class C of g has p-power order, from the orbit-stabiliser
theorem. This gives our C.

The column orthogonality relations of the characters, applied to C and {1}, give

1 +
∑
χ6=1

χ(C)χ(1) = 0,

where the χ in the sum range over the non-trivial irreducible characters. Each χ(C) is an
algebraic integer. If every χ(1) for which χ(C) 6= 0 were divisible by p, then dividing the entire
equation by p would show that 1/p was an algebraic integer, contradiction. So there exists a χ
with χ(C) 6= 0 and χ(1) not divisible by p, as required.

5It suffices to consider the extension field generated by the roots of unity appearing in α.
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19 Topological groups

In studying the finite-dimensional complex representations of a finite group G, we saw that

1. they are all unitarisable;
2. they are completely reducible;
3. the characters of irreducible representations form an orthonormal basis of the space of

class functions;
4. Representations are determined by their characters, up to isomorphisms;
5. The character map χ→ RG is a ring homomorphism, compatible with involutions, χ � χ̄

corresponds to V � V ∗, and with inner products, 〈χV |χW 〉 = 〈V |W 〉 := dim HomG(V ;W ).

Note that 1 ⇒ 2 and 3 ⇒ 4; part (5) is obvious from the definition of characters, save for the
inner product bit, which follows from (1) and (3).

We will now study the representation theory of infinite compact groups, and will see that the
same properties (1)–(5) hold. Point (3) will be amended to account for the fact that the space
of class functions is infinite-dimensional. Correspondingly, there will be infinitely many isomor-
phism classes, but their characters will still form a complete orthonormal set in the (Hilbert)
space of class functions. (This is also called a Hilbert space basis.)

There is a good general theory for all compact groups. In the special case of compact Lie
groups — the groups of isometries of geometric objects, such as SO(n),SU(n),U(n) — the theory
is due to Hermann Weyl6 and is outrageously successful: unlike the finite group case, we can
list all irreducible characters in explicit form! That is the Weyl character formula. However,
the general theory requires two deeper theorems of analysis (existence of the Haar measure and
the Peter-Weyl theorem, see below), that go a bit beyond our means. For simple groups such as
U(1), SU(2) and related ones, these results are quite easy to establish directly, and so we shall
study them completely rigorously. It is not much more difficult to handle U(n) for general n,
but we only have time for a quick survey.

19.1 Definition. A topological group is a group which is also a topological space, and for which
the group operations are continuous. It is called compact if it is so as a topological space. A
representation of a topological group G on a finite-dimensional vector space V is a continuous
group homomorphism ρ : G → GL(V ), with the topology of GL(V ) inherited from the space
End(V ) of linear self-maps.

19.2 Remark. One can define continuity for infinite-dimensional representations, but more care
is needed when defining GL(V ) and its topology. Typically, one starts with some topology on V ,
then one chooses a topology on the space End(V ) of continuous linear operators (for instance,
the norm topology on bounded operators, when V is a Hilbert space) and then one embeds
GL(V ) as a closed subset of End(V ) × End(V ) by the map g 7→ (g, g−1). This defines the
structure of a topological group on GL(V ).

(19.3) Orthonormality of characters
In establishing the key properties (1) and (3) above, the two ingredients were Schur’s Lemma
and Weyl’s trick of averaging over G. The first one applies without change to any group. The
second must be replaced by integration over G. Here, we take advantage of the continuity
assumption in our representations, which ensures that all intervening functions in the argument
are continuous on G, and can be integrated.

Even so, the key properties of the average over G were its invariance under left and right
translation, and the fact that G has total volume 1 (so that the average of the constant function

6The unitary case was worked out by Schur.
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1 is 1). The second property can always be fixed by normalising the volume, but the first
imposed a strong constraint on the volume form we use for integration: the volume element dg
on the group must be left- and right invariant. A (difficult) theorem of Haar asserts that the two
constraints determine the volume element uniquely (subject to a reasonable technical constraint:
specifically, any compact, Hausdorff group carries a unique bi-invariant regular Borel measure
of total mass 1). For Lie groups, an easier proof of existence can be given; we’ll see that for
U(1) and SU(2).

Armed with an invariant integration measure, the main results and their consequences in
Lecture 8 follow as before, replacing 1

|G|
∑

g∈G in the arguments with
∫
G dg.

19.4 Proposition. Every finite-dimensional representation of a compact group is unitarisable,
and hence completely reducible.

19.5 Theorem. Characters of irreducible representations of a compact group have unit L2

norm, and characters of non-isomorphic irreducibles are orthogonal.

19.6 Corollary. A representation is irreducible iff its character has norm 1.

Completeness of characters is a different matter. Its formulation now is that the characters
form a Hilbert space basis of the space of square-integrable class functions. In addition to the
orthogonality properties, this asserts that any continuous class function which is orthogonal to
every irreducible character is null. This asserts the existence of an “ample supply” of irreducible
representations, and so it cannot be self-evident.

In the case of finite groups, we found enough representations by studying the regular repre-
sentations. This method is also applicable to the compact case, but relies here on a fundamental
theorem that we state without proof:

19.7 Theorem (Peter-Weyl). The space of square-integrable functions on G is the Hilbert
space direct sum over finite-dimensional irreducible representations V ,

L2(G) ∼=
⊕̂

End(V ).

The map from left to right sends a function f on G to the operators
∫
G f(g) · ρV (g)dg. The

inverse map sends φ ∈ End(V ) to the function g 7→ TrV (ρV (g)∗φ). The inner product on
End(V ) corresponding to L2 on G is given by 〈φ|ψ〉 = TrV (φ∗ψ) · dimV .

As opposed to the case of finite groups, the proof for compact groups is somewhat involved.
(Lie groups allow for an easier argument.) However, we shall make no use of the Peter-Weyl
theorem here; in the cases we study, the completeness of characters will be established by direct
construction of representations.

(19.8) A compact group: U(1)
To illustrate the need for a topology and the restriction to continuous representations, we start
off by ignoring these aspects. As an abelian group, U(1) is isomorphic to R/Z via the map
x 7→ exp(2πix). Now R is a vector space over Q, and general nonsense (Hamel’s basis theorem)
asserts that is must have a basis A = {α} ⊂ R as a Q-vector space; moreover, we can choose
our first basis element to be 1. Thus, we have isomorphisms of abelian groups,

R ∼= Q⊕
⊕
α 6=1

Qα, R/Z ∼= Q/Z×
⊕
α 6=1

Qα.

It’s easy to see that the choice of an integer n and of a complex number zα for each A 3 α 6= 1
defines a one-dimensional complex representation of the second group, by specifying

(x, xα) 7→ exp(2πinx) ·
∏
α 6=1

exp(2πizα · xα).

44



Notice that, for every element in our group, all but finitely many coordinates xα must vanish,
so that almost all factors in the product are 1.

A choice of complex number for each element of a basis of R over Q is not a sensible collection
of data; and it turns out this does not even succeed in covering all 1-dimensional representations
of R/Z. Things will improve dramatically when we impose the continuity requirement; we will
see in the next lecture that the only surviving datum is the integer n.

19.9 Remark. The subgroup Q/Z turns out to have a more interesting representation theory,
even when continuity is ignored. The one-dimensional representations are classified by the pro-
finite completion Ẑ of Z.

Henceforth, “representation” of a topological group will mean continuous representation. We
now classify the finite-dimensional representations of U(1). The character theory is closely tied
to the theory of Fourier series.

19.10 Theorem. A continuous 1-dimensional representation U(1) → C× has the form z 7→ zn,
for some integer n.

For the proof, we will need the following

19.11 Lemma. The closed proper subgroups of U(1) are the cyclic subgroups µn of nth roots of
unity (n > 1).

Proof of the Lemma. If q ∈ U(1) is not a root of unity, then its powers are dense in U(1)
(exercise, using the pigeonhole principle). So, any closed, proper subgroup of U(1) consists only
of roots of 1. Among those, there must be one of smallest argument (in absolute value) or else
there would be a sequence converging to 1; these would again generate a dense subgroup of U(1).
The root of unity of smallest argument is then the generator.

Proof of Theorem 19.10. A continuous map ϕ : U(1) → C× has compact, hence bounded image.
The image must lie on the unit circle, because the integral powers of any other complex number
form an unbounded sequence. So ϕ is a continuous homomorphism from U(1) itself.

Now, kerϕ is a closed subgroup of U(1). If kerϕ is the entire group, then ϕ ∼= 1 and the
theorem holds with n = 0. If kerϕ = µn (n ≥ 1), we will now show that ϕ(z) = z±n, with the
same choice of sign for all z. To see this, define a continuous function

ψ : [0, 2π/n] → R, ψ(0) = 0, ψ(θ) = argϕ(eiθ);

in other words, we parametrise U(1) by the argument θ, start with ψ(0) = 0, which is one value
of the argument of ϕ(1) = 1, choose the argument so as to make the function continuous.

Because kerϕ = µn, ψ must be injective on [0, 2π/n). By continuity, it must be monotonically
increasing or decreasing (Intermediate Value Theorem), and we must have ψ(2π/n) = ±2π:
the value zero is ruled out by monotonicity and any other multiple of 2π would lead to an
intermediate value of θ with ϕ(eiθ) = 1. Henceforth, ± denotes the sign of ψ(2π/n).

Because ϕ is a homomorphism and ϕ(e2πi/n) = 1, ϕ(e2πi/mn) must be an mth root of unity,
and so ψ({2πk/mn}) ⊂ {±2πk/m}, k = 0, . . . ,m. By monotonicity, these m + 1 values must
be taken exactly once and in the natural order, so ψ(2πk/mn) = ±2πk/m, for all m and all
k = 0, . . . ,m. But then, ψ(θ) = ±n · θ, by continuity, and ϕ(z) = z±n, as claimed.

19.12 Remark. Complete reducibility now shows that continuous finite-dimensional representa-
tions of U(1) are in fact algebraic: that is, the entries in a matrix representations are Laurent
polynomials in z. This is not an accident; it holds for a large class of topological groups (the
compact Lie groups).
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(19.13) Character theory
The homomorphisms ρn : U(1) → C×, ρn(z) = zn form the complete list of irreducible repre-
sentations of U(1). Clearly, their characters (which we abusively denote by the same symbol)
are linearly independent; in fact, they are orthonormal in the inner product

〈ϕ|ψ〉 =
1
2π

∫ 2π

0
ϕ(θ)ψ(θ)dθ,

which corresponds to “averaging over U(1)” (z = eiθ). The functions ρn are sometimes called
Fourier modes, and their finite linear combinations are the Fourier polynomials.

As U(1) is abelian, it coincides with the space of its conjugacy classes. We can now state
our main theorem.

19.14 Theorem. (i) The functions ρn form a complete list of irreducible characters of U(1).
(ii) Every finite-dimensional representation V of U(1) is isomorphic to a sum of the ρn. Its
character χV is a Fourier polynomial. The multiplicity of ρn in V is the inner product 〈ρn|χV 〉.

Recall that complete reducibility of representations follows by Weyl’s unitary trick, averaging
any given inner product by integration on U(1).

As the space of (continuous) class functions is infinite-dimensional, it requires a bit of care
to state the final part of our main theorem, that the characters form a “basis” of the space of
class functions. The good setting for that is the Hilbert space of square-integrable functions,
which we discuss below. For now, let us just note an algebraic version of the result.

19.15 Proposition. The ρn form a basis of the polynomial functions on U(1) ⊂ R2.

Indeed, on the unit circle, z̄ = z−1 so the the Fourier polynomials are also the polynomials in z
and z̄, which can also be expressed as polynomials in x, y.

(19.16) Digression: Fourier series
The Fourier modes ρn form a complete orthonormal set (orthonormal basis) of the Hilbert space
L2(U(1)). This means that every square-integrable function f ∈ L2 has a (Fourier) series
expansion

f(θ) =
∞∑
−∞

fn · einθ =
∞∑
−∞

fn · ρn, (*)

which converges in mean square; the Fourier coefficients fn are given by the formula

fn = 〈ρn|f〉 =
1
2π

∫ 2π

0
e−inθf(θ)dθ. (**)

Recall that mean-square convergence signifies that the partial sums approach f , in the distance
defined by the inner product. The proof of most of this is fairly easy. Orthonormality of the ρn

implies the Fourier expansion formula for the Fourier polynomials, the finite linear combinations
of the ρn. (Of course, in this case the Fourier series is a finite sum, and no analysis is needed.)
Furthermore, for any given finite collection S of indexes n, and for any f ∈ L2, the sum of terms
in (*) with n ∈ S is the orthogonal projection of f onto the the span of the ρn, n ∈ S. Hence,
any finite sum of norms of the Fourier coefficients

∑
‖fn‖2 in (*) is bounded by ‖f‖2, and the

Fourier series converges. Moreover, the limit g has the property that f − g is orthogonal to each
ρn; in other words, g is the projection of f onto the span of all the ρn.

The more difficult part is to show that any f ∈ L2 which is orthogonal to all ρn vanishes.
One method is to derive it from a powerful theorem of Weierstraß’, which says that the Fourier
polynomials are dense in the space of continuous functions, in the sense of uniform convergence.
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(The result holds for continuous functions on any compact subset of RN ; here, N = 2.) Approx-
imating a candidate f , orthogonal to all ρn, by a sequence of Fourier polynomials pk leads to a
contradiction, because

‖f − pk‖2 = ‖f‖2 + ‖pk‖2 ≥ ‖f‖2,

by orthogonality, and yet uniform convergence certainly implies convergence in mean-square.
We summarise the basic facts in the following

19.17 Theorem. (i) Any continuous function on U(1) can be uniformly approximated by finite
linear combinations of the ρn.
(ii) Any square-integrable function f ∈ L2(U(1)) has a series expansion f =

∑
fn · ρn, with

Fourier coefficients fn given by (**).

20 The group SU(2)

We move on to the group SU(2). We will describe its conjugacy classes, find the bi-invariant
volume form, whose existence implies the unitarisability and complete reducibility of its con-
tinuous finite-dimensional representations. In the next lecture, we will list the irreducibles with
their characters.

Giving away the plot, observe that SU(2) acts on the space P of polynomials in two variables
z1, z2, by its natural linear action on the coordinates. We can decompose P into the homogeneous
pieces Pn, n = 0, 1, 2, . . ., preserved by the action of SU(2): thus, the space P0 of constants is
the trivial one-dimensional representation, the space P1 of linear functions the standard 2-
dimensional one, etc. Then, P0, P1, P2, . . . is the complete list of irreducible representations of
SU(2), up to isomorphism, and every continuous finite-dimensional representation is isomorphic
to a direct sum of those.

(20.1) SU(2) and the quaternions
By definition, SU(2) is the group of complex 2×2 matrices preserving the complex inner product
and with determinant 1; the group operation is matrix multiplication. Explicitly,

SU(2) =
{[

u v
−v̄ ū

]
: u, v ∈ C, |u|2 + |v|2 = 1

}
.

Geometrically, this can be identified with the three-dimensional unit sphere in C2. It is useful
to replace C2 with Hamilton’s quaternions H, generated over R by elements i, j satisfying the
relations i2 = j2 = −1, ij = −ji. Thus, H is four-dimensional, spanned by 1, i, j and k := ij. The
conjugate of a quaternion q = a+ bi+ cj+dk is q̄ := a− bi− cj−dk, and the quaternion norm is

‖q‖2 = qq̄ = q̄q = a2 + b2 + c2 + d2.

The relation q1q2 = q̄2q̄1 shows that ‖‖ : H → R is multiplicative,

‖q1q2‖ = q1q2 · q1q2 = q1q2 · q̄2q̄1 = ‖q1‖‖q2‖

in particular, the “unit quaternions” (the quaternions of unit norm) form a group under multi-
plication. Direct calculation establishes the following.

20.2 Proposition. Sending
[
u v
−v̄ u

]
to q = u + vj gives an isomorphism of SU(2) with the

multiplicative group of unit quaternions.
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(20.3) Conjugacy classes
A theorem from linear algebra asserts that unitary matrices are diagonalisable in an orthonormal
eigenbasis. The diagonalised matrix is then also unitary, so its diagonal elements are complex
numbers of unit norm. These numbers, of course, are the eigenvalues of the matrix. They
are only determined up to reordering. We therefore get a bijection of conjugacy classes in the
unitary group with unordered N -tuples of complex numbers of unit norm:

U(N)/U(N) ↔ U(1)N/SN ,

where the symmetric group SN acts by permuting the N factors of U(1)N . The map from right
to left is defined by the inclusion U(1)N ⊂ U(N) and is therefore continuous; a general theorem
from topology ensures that it is in fact a homeomorphism.7

Clearly, restricting to SU(N) imposed the det = 1 restriction on the right side U(1)N .
However, there is a potential problem in sight, because it might happen, in principle, that two
matrices in SU(N) will be conjugate in U(N), but not in SU(N). For a general situation of a
subgroup H ⊂ G this warrants deserves careful consideration. In the case at hand, however, we
are lucky. The scalar matrices U(1) · Id ⊂ U(N) are central, that is, their conjugation action is
trivial. Now, for any matrix A ∈ U(N) and any Nth root r of detA, we have r−1A ∈ SU(N),
and conjugating by the latter has the same effect as conjugation by A. We then get a bijection

SU(N)/SU(N) ↔ S
(
U(1)N

)
/SN ,

where U(1)N is identified with the group of diagonal unitary N ×N matrices and the S on the
right, standing for “special”, indicates its subgroup of determinant 1 matrices.

20.4 Proposition. The normalised trace 1
2Tr : SU(2) → C gives a homomorphisms of the set

of conjugacy classes in SU(2) with the interval [−1, 1].

The set of conjugacy classes is given the quotient topology.

Proof. As discussed, matrices are conjugate in SU(2) iff their eigenvalues agree up to order. The
eigenvalues form a pair {z, z−1}, with z on the unit circle, so they are the roots of

X2 − (z + z−1)X + 1,

in which the middle coefficient ranges over [−2, 2].

The quaternion picture provides a good geometric model of this map: the half-trace becomes
the projection q 7→ a on the real axis R ⊂ H. The conjugacy classes are therefore the 2-
dimensional spheres of constant latitude on the unit sphere, plus the two poles, the singletons
{±1}. The latter correspond to the central elements ±I2 ∈ SU(2).

(20.5) Characters as Laurent polynomials
The preceding discussion implies that the characters of continuous SU(2)-representations are
continuous functions on [−1, 1]. It will be more profitable, however, to parametrise that interval
by the “latitude” φ ∈ [0, π], rather than the real part cosφ. We can in fact let φ range from
[0, 2π], provide we remember our functions are invariant under φ↔ −φ and periodic with period
2π. We call such functions of φ Weyl-invariant, or even. Functions which change sign under
that same symmetry are anti-invariant or odd.

7We use the quotient topologies on both sides. The result I am alluding to asserts that a continuous bijection
from a compact space to a Hausdorff space is a homeomorphism.
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Notice that φ parametrises the subgroup of diagonal matrices, isomorphic to U(1),[
eiφ 0
0 e−iφ

]
=
[
z 0
0 z−1

]
∈ SU(2),

and the transformation φ↔ −φ is induced by conjugation by the matrix
[
0 i
i 0

]
∈ SU(2). The

character of an SU(2)-representation V will be the function of z ∈ U(1)

χV (z) = TrV

([
z 0
0 z−1

])
,

invariant under z ↔ z−1. When convenient, we shall re-express it in terms of φ and abusively
write χV (φ).

A representation of SU(2) restricts to one of our U(1), and we know from last lecture that
the characters of the latter are polynomials in z and z−1. Such functions are called Laurent
polynomials. We therefore obtain the

20.6 Proposition. Characters of SU(2)-representations are even Laurent polynomials in z.

(20.7) The volume form and Weyl’s Integration formula for SU(2)
For finite groups, averaging over the group was used to prove complete reducibility, to define the
inner product of characters and prove the orthogonality theorems. For compact groups (such as
U(1)), integration over the group must be used instead. In both cases, the essential property of
the operation is its invariance under left and right translations on the group. To state this more
precisely: the linear functional sending a continuous function ϕ on G to

∫
G ϕ(g)dg is invariant

under left and right translations of ϕ. A secondary property (which is arranged by appropriate
scaling) is that the average or integral of the constant function 1 is 1.

We thus need a volume form over SU(2) which is invariant under left and right translations.
Our geometric model for SU(2) as the unit sphere in R4 allows us to find it directly, without
appealing to Haar’s (difficult) general result. Note, indeed, that the actions of SU(2) on H by
left and right multiplication preserve the quaternion norm, hence the Euclidean distance. In
particular, the usual Euclidean volume element on the unit sphere must be invariant under both
left and right multiplication by SU(2) elements.

20.8 Remark. The right×left action of SU(2)×SU(2) on R4 = H, whereby α×β sends q ∈ H to
αqβ−1, gives a homomorphism h : SU(2) × SU(2) → SO(4). (The action preserves orientation,
because the group is connected.) Clearly, (−Id,−Id) acts as the identity, so h factors through
the quotient SU(2) × SU(2)/{±(Id, Id)}, and indeed turns out to give an isomorphism of the
latter with SO(4). We will discuss this in Lecture 22.

To understand the inner product of characters, we are interested in integrating class functions
over SU(2). This must be expressible in terms of their restriction to U(1). This is made explicit
by the following theorem, whose importance cannot be overestimated: as we shall see, it implies
the character formulae for all irreducible representations of SU(2). Let dg be the Euclidean
volume form on the unit sphere in H, normalised to total volume 1, and let ∆(φ) = eiφ − e−iφ

be the Weyl denominator.

20.9 Theorem (Weyl Integration Formula). For a continuous class function f on SU(2),
we have ∫

SU(2)
f(g)dg =

1
2

1
2π

∫ 2π

0
f(φ) · |∆(φ)|2dφ =

1
π

∫ 2π

0
f(φ) sin2 φ dφ.
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Thus, the integral over SU(2) can be computed by restriction to the U(1) of diagonal matrices,
after correcting the measure by the factor 1

2 |∆(φ)|2. We are abusively writing f(φ) for the value

of f at
[
eiφ 0
0 e−iφ

]
.

Proof. In the presentation of SU(2) as the unit sphere in H, the function f being constant on
the spheres of constant latitude. The volume of a spherical slice of width dφ is C · sin2 φ dφ,
with the constant C normalised by the “total volume 1” condition∫ π

0
C · sin2 φ dφ = 1,

whence C = 2/π, in agreement with the theorem.

21 Irreducible characters of SU(2)

Let us check the irreducibility of some representations.

• The trivial 1-dimensional representation is obviously irreducible; its character has norm 1,
due to our normalisation of the measure.

• The character of the standard representation on C2 is eiφ + e−iφ = 2 cosφ. Its norm is

4
π

∫ 2π

0
cos2 φ · sin2 φ dφ =

1
π

∫ 2π

0
(2 cosφ sinφ)2 dφ =

1
π

∫ 2π

0
sin2 2φ dφ = 1,

so C2 is irreducible. Of course, this can also be seen directly (no invariant lines).

• The character of the tensor square C2 ⊗ C2 is 4 cos2 φ, so its square norm is

1
π

∫ 2π

0
16 cos4 φ sin2 φ dφ =

1
π

∫ 2π

0
4 cos2 φ sin2 2φ dφ

=
1
π

∫ 2π

0
(sin 3φ+ sinφ)2 dφ

=
1
π

∫ 2π

0

(
sin2 3φ+ sin2 φ+ 2 sinφ sin 3φ

)
dφ = 1 + 1 = 2,

so this is reducible. Indeed, we have (C2)⊗2 = Sym2C2⊕Λ2C2; these must be irreducible.
Λ2C2 is the trivial 1-dim. representation, since its character is 1 (the product of the eigen-
values), and so Sym2C2 is a new, 3-dimensional irreducible representation, with character
2 cos 2φ+ 1 = z2 + z−2 + 1.

So far we have found the irreducible representations C = Sym0C2, C2 = Sym1C2, Sym2C2,
with characters 1, z + z−1, z2 + 1 + z−2. This surely lends credibility to the following.

21.1 Theorem. The character χn of SymnC2 is zn + zn−2 + . . .+ z2−n + z−n. Its norm is 1,
and so each SymnC2 is an irreducible representation of SU(2). Moreover, this is the complete
list of irreducibles, as n ≥ 0.

21.2 Remark. Note that SymnC2 has dimension n+ 1.
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Proof. The standard basis vectors e1, e2 scale under g =
[
z 0
0 z−1

]
by the factors z±1. Now,

the basis vectors of SymnC2 arise by symmetrising the vectors e⊗n
1 , e⊗(n−1)

1 ⊗ e2, . . . , e⊗n
2 in the

nth tensor power (C2)⊗n. The vectors appearing in the symmetrisation of e⊗p
1 ⊗ e⊗(n−p)

2 are
tensor products containing p factors of e1 and n− p factors of e2, in some order; each of these
is an eigenvectors for g, with eigenvalue zp · zn−p. Hence, the eigenvalues of g on Symn are
{zn, zn−2, . . . , z−n} and the character formula follows.

We have

χn(z) =
zn+1 − z−n−1

z − z−1
,

whence χn(z)|2|∆(z)|2 = |zn+1 − z−n−1|2 = 4 sin2[(n+ 1)φ]. Thus,

‖χn‖2 =
1
4π

∫ 2π

0
4 sin2[(n+ 1)φ] dφ =

1
π
· π = 1,

proving irreducibility.
To see completeness, observe that the functions ∆(z)χn(z) span the vector space of odd

Laurent polynomials (§20.5). For any character χ, the function χ(z)∆(z) is an odd Laurent
polynomial. If χ was a new irreducible character, χ(z)∆(z) would have to be orthogonal to
all anti-invariant Laurent polynomials, in the standard inner product on the circle. (Combined
with the weight |∆|2, this is the correct SU(2) inner product up to scale, as per the integration
formula). But this is impossible, as the orthogonal complement of the odd polynomials is
spanned by the even ones.

(21.3) Another look at the irreducibles
The group SU(2) acts linearly on the vector space P of polynomials in z1, z2 by transforming
the variables in the standard way,[

u v
−v̄ ū

]
·
[
z1
z2

]
=
[
uz1 + vz2
−v̄z1 + ūz2

]
.

This preserves the decomposition of P as the direct sum of the spaces Pn of homogeneous
polynomials of degree n.

21.4 Proposition. As SU(2)-representations, SymnC2 ∼= Pn, the space of homogeneous poly-
nomials of degree n in two variables.

Proof. An isomorphism from Pn to SymnC2 is defined by sending zp
1z

n−p
2 to the symmetrisation

of e⊗p
1 ⊗e⊗(n−p)

2 . By linearity, this will send (uz1 +vz2)p ·(−v̄z1 + ūz2)n−p to the symmetrisation
of (ue1 + ve2)⊗p ⊗ (−v̄e1 + ūe2)⊗(n−p). This shows that our isomorphism commutes with the
SU(2)-action.

21.5 Remark. Equality of the representations up to isomorphism can also be seen by checking
the character of a diagonal matrix g, for which the zp

1z
n−p
2 are eigenvectors.

(21.6) Tensor product of representations
Knowledge of the characters allows us to find the decomposition of tensor products. Obviously,
tensoring with C does not change a representation. The next example is

χ1 · χn = (z + z−1)
zn+1 − z−n−1

z − z−1
=
zn+2 + zn − z−n − z−2−n

z − z−1
= χn+1 + χn−1,

provided n ≥ 1; if n = 0 of course the answer is χ1. More generally, we have
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21.7 Theorem. If p ≥ q, χp · χq = χp+q + χp+q−2 + . . .+ χp−q. Hence,

SympC2 ⊗ SymqC2 ∼=
q⊕

k=0

Symp+q−2k C2.

Proof.

χp(z) · χq(z) =
zp+1 − z−p−1

z − z−1
·
(
zq + zq−2 + . . .+ z−q

)
=

q∑
k=0

zp+q+1−2k − z2k−p−q−1

z − z−1

=
q∑

k=0

χp+q−2k ;

the condition p ≥ q ensures that there are no cancellations in the sum.

21.8 Remark. Let us define formally χ−n = −χn−2, a “virtual character”. Thus, χ0 = 1, the
trivial character, χ−1 = 0 and χ−2 = −1. The decomposition formula becomes

χp · χq = χp+q + χp+q−2 + . . .+ χp−q,

regardless whether p ≥ q or not.

(21.9) Multiplicities
The multiplicity of the irreducible representation Symn in a representation with character χ(z)
can be computed as the inner product 〈χ|χn〉, with the integration (20.9). The following recipe,
which exploits the simple form of the functions ∆(z)χn(z) = zn+1−z−n−1, is sometimes helpful.

21.10 Proposition. 〈χ|χn〉 is the coefficient of zn+1 in ∆(z)χ(z).

22 Some SU(2)-related groups

We now discuss two groups closely related to SU(2) and describe their irreducible representations
and characters. These are SO(3), SO(4) and U(2). We start with the following

22.1 Proposition. SO(3) ∼= SU(2)/{±Id}, SO(4) ∼= SU(2) × SU(2)/{±(Id, Id)} and U(2) ∼=
U(1)× SU(2)/{±(Id, Id)}.

Proof. Recall the left×right multiplication action of SU(2), viewed as the space of unit norm
quaternions, on H ∼= R4. This gives a homomorphism from SU(2)× SU(2) → SO(4). Note that
α×β send 1 ∈ H to αβ−1, so α×β fixes 1 iff α = β. The pair α×α fixes every other quaternion
iff α is central in SU(2), that is, α = ±Id. So the kernel of our homomorphism is {±(Id, Id)}.

We see surjectivity and construct the isomorphism SU(2) → SO(3) at the same time. Re-
stricting our left×right action to the diagonal copy of SU(2) leads to the conjugation action of
SU(2) on the space of pure quaternions, spanned by i, j, k. I claim that this generates the full
rotation group SO(3): indeed, rotations in the 〈i, j〉-plane are implemented by elements a+ bk,
and similarly with any permutation of i, j, k, and these rotations generate SO(3). This constructs
a surjective homomorphism from SU(2) to SO(3), but we already know that the kernel is {±Id}.
So we have the assertion about SO(3).

Returning to SO(4), we can take any orthonormal, pure quaternion frame to any other one
by a conjugation. We can also take 1 ∈ H to any other unit vector by a left multiplication.
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Combining these, it follows that we can take any orthonormal 4-frame to any other one by a
suitable conjugation, followed by a left multiplication.

Finally, the assertion about U(2) is clear, as both U(1) and SU(2) sit naturally in U(2) (the
former as the scalar matrices), and intersect at {±Id}.

The group isomorphisms in the proposition are in fact homeomorphisms; that means, the
inverse map is continuous (using the quotient topology on the quotient groups). It is not difficult
(although a bit painful) to prove this directly from the construction, but this follows more easily
from the following topological fact which is of independent interest.

22.2 Proposition. Any continuous bijection from a Hausdorff space to a compact space is a
homeomorphism.

(22.3) Representations
It follows that continuous representations of the three groups in Proposition 22.1 are the same
as continuous representations of SU(2),SU(2) × SU(2) and SU(2) × U(1), respectively, which
send −Id,−(Id, Id) and −(Id, Id) to the identity matrix.

22.4 Corollary. The complete list of irreducible representations of SO(3) is Sym2nC2, as n ≥ 0.

This formulation is slightly abusive, as C2 itself is not a representation of SO(3) but only of
SU(2) (−Id acts as −Id). But the sign problem is fixed on all even symmetric powers. For
example, Sym2C2 is the standard 3-dimensional representation of SO(3). (There is little choice
about it, as it is the only 3-dimensional representation on the list).

The image of our copy {diag[z, z−1]} ⊂ SU(2) of U(1), in our homomorphism, is the family
of matrices 1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ

 ,
with (caution!) ϕ = 2φ. These cover all the conjugacy classes in SO(3), and the irreducible
characters of SO(3) restrict to this as

1 + 2 cosϕ+ 2 cos(2ϕ) + · · ·+ 2 cos(nϕ).

(22.5) Representations of a product
Handling the other two groups, SO(4) and U(2), requires the following

22.6 Lemma. For the product G × H of two compact groups G and H, the complete list of
irreducible representations consists of the tensor products V ⊗W , as V and W range over the
irreducibles of G and H, independently.

Proof using character theory. From the properties of the tensor product of matrices, it follows
that the character of V ⊗W at the element g × h is

χV⊗W (g × h) = χV (g) · χW (h).

Now, a conjugacy class in G×H is a Cartesian product of conjugacy classes in G and H, and
character theory ensures that the χV and χW form Hilbert space bases of the L2 class functions
on the two groups. It follows that the χV (g) · χW (h) form a Hilbert space basis of the class
functions on G×H, so this is a complete list of irreducible characters.

Incidentally, the proof establishes the completeness of characters for the product G×H, if it
was known on the factors. So, given our knowledge of U(1) and SU(2), it does give a complete
argument. However, we also indicate another proof which does not rely on character theory,
but uses complete reducibility instead. The advantage is that we only need to know complete
reducibility under one of the factors G,H.
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Proof without characters. Let U be an irreducible representation of G × H, and decompose it
into isotypical components Ui under the action of H. Because the action of G commutes with H,
it must be block-diagonal in this decomposition, and irreducibility implies that we have a single
block. Let then W be the unique irreducible H-type appearing in U , and let V := HomH(W,U).
This inherits and action of G from U , and we have an isomorphism U ∼= W ⊗ HomH(W,U) =
V ⊗W (see Example Sheet 2), with G and H acting on the two factors. Moreover, any proper
G-subrepresentation of V would lead to a proper G×H-subrepresentation of U , and this implies
irreducibility of V .

22.7 Corollary. The complete list of irreducible representations of SO(4) is SymmC2⊗SymnC2,
with the two SU(2) factors acting on the two Sym factors. Here, m,n ≥ 0 and m = n mod 2.

(22.8) A closer look at U(2)
Listing the representations of U(2) requires a comment. As U(2) = U(1) × SU(2)/{±(Id, Id)},
in principle we should tensor together pairs of representations of U(1) and SU(2) of matching
parity, so that −(Id, Id) acts as +Id in the product. However, observe that U(2) acts naturally
on C2, extending the SU(2) action, so the action of SU(2) on Symn C2 also extends to all of
U(2). Thereunder, the factor U(1) of scalar matrices does not act trivially, but rather by the
nth power of the natural representation (since it acts naturally on C2).

In addition, U(2) has a 1-dimensional representation det : U(2) → U(1). Denote by det⊗m

its mth tensor power; it restricts to the trivial representation on SU(2) and to the 2mth power
of the natural representation on the scalar subgroup U(1). The classification of representations
of U(2) in terms of their restrictions to the subgroups U(1) and SU(2) coverts then into the

22.9 Proposition. The complete list of irreducible representations of U(2) is det⊗m⊗Symn C2,
with m,n ∈ Z, n ≥ 0.

(22.10) Characters of U(2)
We saw earlier that the conjugacy classes of U(2) were labelled by unordered pairs {z1, z2} of
eigenvalues. These are double-covered by the subgroup of diagonal matrices diag[z1, z2]. The
trace of this matrix on Symn C2 is zn

1 +zn−1
1 z2+· · ·+zn

2 , and so the character of det⊗m⊗Symn C2

is the symmetric8 Laurent polynomial

zm+n
1 zm

2 + zm+n−1
1 zm+1

2 + · · ·+ zm
1 z

m+n
2 . (22.11)

Moreover, these are all the irreducible characters of U(2). Clearly, they span the space of
symmetric Laurent polynomials. General theory tells us that they should form a Hilbert space
basis of the space of class functions, with respect to the U(2) inner product; but we can check
this directly from the

22.12 Proposition (Weyl integration formula for U(2)). For a class function f on U(2),
we have ∫

U(2)
f(u)du =

1
2

1
4π2

∫∫ 2π×2π

0×0
f(φ1, φ2) · |eiφ1 − eiφ2 |2dφ1dφ2.

Here, f(φ1, φ2) abusively denotes f(diag[eiφ1 , eiφ2 ]). We call ∆(z1, z2) := z1 − z2 = eiφ1 − eiφ2

the Weyl denominator for U(2). The proposition is proved by lifting f to the double cover
U(1) × SU(2) of U(2) and applying the integration formula for SU(2); we omit the details.
Armed with the integration formula, we could have discovered the character formulae (22.11) a
priori, before constructing the representations. Of course, proving that all formulae are actually
realised as characters requires either a direct construction (as given here) or a general existence
argument, as secured by the Peter-Weyl theorem.

8Under the switch z1 ↔ z2.
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23 The unitary group∗

The representation theory of the general unitary groups U(N) is very similar to that of U(2), with
the obvious change that the characters are now symmetric Laurent polynomials in N variables,
with integer coefficients; the variables represent the eigenvalues of a unitary matrix. These are
polynomials in the zi and z−1

i which are invariant under permutation of the variables. Any such
polynomial can be expressed as (z1z2 · · · zN )n · f(z1, . . . , zN ), where f is a genuine symmetric
polynomial with integer coefficients. The fact that all U(N) characters are of this form follows
from the classification of conjugacy classes in Lecture 20, and the representation theory of the
subgroup U(1)N : representations of the latter are completely reducible, with the irreducible
being tensor products of N one-dimensional representations of the factors (Lemma 22.6).

(23.1) Symmetry vs. anti-symmetry
Let us introduce some notation. For an N -tuple λ = λ1, . . . , λN of integers, denote by zλ the
(Laurent) monomial zλ1

1 zλ2
2 · · · zλN

N . Given σ ∈ SN , the symmetric group on N letters, zσ(λ)

will denote the monomial for the permuted N -tuple σ(λ). There is a distinguished N -tuple
δ = (N − 1, N − 2, . . . , 0). The anti-symmetric Laurent polynomials

aλ(z) :=
∑

σ∈SN

ε(σ) · zσ(λ),

where ε(σ) denotes the signature of σ, are distinguished by the following simple observation:

23.2 Proposition. As λ ranges over the decreasingly ordered N -tuples, λ1 ≥ λ2 ≥ . . . ≥ λN ,
the aλ+δ form a Z-basis of the integral anti-symmetric Laurent polynomials.

The polynomial aδ(z) is special, as the following identities show:

aδ(z) = det[zN−q
p ] =

∏
p<q

(zp − zq).

The last product is also denoted ∆(z) and called the Weyl denominator. The first identity
is simply the big formula for the determinant of the matrix with entries zN−q

p ; the second is
called the Vandermonde formula and can be proved in several ways. One can do induction
on N , combined with some clever row operations. Or, one notices that the determinant is a
homogeneous polynomial in the zp, of degree N(N − 1)/2, and vanishes whenever zp = zq for
some p 6= q; this implies that the product on the right divides the determinant, so we have
equality up to a constant factor, and we need only match the coefficient for a single term in the
formula, for instance zδ.

23.3 Remark. There is a determinant formula (although not a product expansion) for every aλ:

aλ(z) = det[zλq
p ].

23.4 Proposition. Multiplication by ∆ establishes a bijection between symmetric and anti-
symmetric Laurent polynomials with integer coefficients.

Proof. The obvious part (which is the only one we need) is that ∆ · f is anti-symmetric and
integral, if f is symmetric integral. In the other direction, anti-symmetry of a g implies its
vanishing whenever zp = zq for some p 6= q, which (by repeated use of Bézout’s theorem, that
g(a) = 0 ⇒ (X − a)|g(X)) implies that ∆(z) divides g, with integral quotient.

23.5 Remark. The proposition and its proof apply equally well to the genuine polynomials, as
opposed to Laurent polynomials.
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(23.6) The irreducible characters of U(N)
23.7 Definition. The Schur function sλ is defined as

sλ(z) :=
aλ+δ(z)
aδ(z)

=
aλ+δ(z)
∆(z)

.

By the previous proposition, the Schur functions form an integral basis of the space of sym-
metric Laurent polynomials with integer coefficients. The Schur polynomials are the genuine
polynomials among the sλ’s; they correspond to the λ’s where each λk > 0, and they form a
basis of the space of integral symmetric polynomials. Our main theorem is now

23.8 Theorem. The Schur functions are precisely the irreducible characters of U(N).

Following the model of SU(2) in the earlier sections and the general orthogonality theory of
characters, the theorem breaks up into two statements.

23.9 Proposition. The Schur functions are orthonormal in the inner product defined by inte-
gration over U(N), with respect to the normalised invariant measure.

23.10 Proposition. Every sλ is the character of some representation of U(N).

We shall not prove Proposition 23.9 here; as in the case of SU(2), it reduces to the following
integration formula, whose proof, however, is now more difficult, due to the absence of a concrete
geometric model for U(N) with its invariant measure.

23.11 Theorem (Weyl Integration for U(N)). For a class function f on U(N), we have∫
U(N)

f(u)du =
1
N !

1
(2π)N

∫ 2π

0
· · ·
∫ 2π

0
f(φ1, . . . , φN ) · |∆(z)|2dφ1 · · · dφN .

We have used the standard convention f(φ1, . . . , φN ) = f(diag[z1, . . . , zN ]) and zp = eiφp .

(23.12) Construction of representations
Much like in the case of SU(2), the irreps of U(N) can be found in terms of the tensor powers of its
standard representation on CN . Formulating this precisely requires a comment. A representation
of U(N) will be called polynomial iff its character is a genuine (as opposed to Laurent) polynomial
in the zp. For example, the determinant representation u 7→ detu is polynomial, as its character
is z1 · · · zN , but its dual representation has character (z1 · · · zN )−1 and is not polynomial.

23.13 Remark. A symmetric polynomial in the zp is expressible in terms of the elementary
symmetric polynomials. If the zp are the eigenvalues of a matrix u, these are the coefficients of
the characteristic polynomial of u. As such, they have polynomial expressions in terms of the
entries of u. Thus, in any polynomial representation ρ, the trace of ρ(u) is a polynomial in the
entries of u ∈ U(N). It turns out in fact that all entries of the matrix ρ(u) are polynomially
expressible in terms of those of u, without involving the entries of u−1.

Now, the character of (CN )⊗d is the polynomial (z1 + · · · + zN )d, and it follows from our
discussion of Schur functions and polynomials that any representation of U(N) appearing in the
irreducible decomposition of (CN )⊗d is polynomial. The key step in proving the existence of
representation now consists in showing that every Schur polynomial appears in the irreducible
decomposition of (CN )⊗d, for some d. This implies that all Schur polynomials are characters
of representations. However, any Schur function converts into a Schur polynomial upon multi-
plication by a large power of det; so this does imply that all Schur functions are characters of
U(N)-representations (a polynomial representation tensored with a large inverse power of det).
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Note that the Schur function sλ is homogeneous of degree |λ| = λ1+ · · ·+λN ; so if it appears
in any (CN )⊗d, it must do so for d = |λ|. Checking its presence requires us only to show that

〈sλ|(z1 + · · ·+ zN )|λ|〉 > 0

in the inner product (23.11). While there is a reasonably simple argument for this, it turns out
that we can (and will) do much more with little extra effort.

(23.14) Schur-Weyl duality
To state the key theorem, observe that the space (CN )⊗d carries an action of the symmetric
group Sd on d letters, which permutes the factors in every vector v1⊗v2⊗· · ·⊗vd. Clearly, this
commutes with the action of U(N), in which a matrix u ∈ U(N) transforms all tensor factors
simultaneously. This way, (CN )⊗d becomes a representation of the product group U(N)× Sd.

23.15 Theorem (Schur-Weyl duality). Under the action of U(N)×Sd, (CN )⊗d decomposes
as a direct sum of products ⊕

λ

Vλ ⊗ Sλ

labelled by partitions of d with no more than N parts, in which Vλ is the irreducible representation
of U(N) with character sλ and Sλ is an irreducible representation of Sd.

The representations Sλ, for various λ’s, depend only on λ (and not on N), are pairwise
non-isomorphic. For N ≥ d they exhaust all irreducible representations of Sd.

Recall that a partition of d with n parts is a sequence λ1 ≥ λ2 ≥ . . . λn > 0 of integers summing
to d. Once N ≥ d, all partitions of d are represented in the sum. As the number of conjugacy
classes in Sd equals the number of partitions, the last sentence in the theorem is obvious. Nothing
else in the theorem is obvious; it will be proved in the next section.

24 The symmetric group and Schur-Weyl duality∗

(24.1) Conjugacy classed in the symmetric group
The duality theorem relates the representations of the unitary groups U(N) to those of the
symmetric groups Sd, so we must say a word about the latter. Recall that every permutation
has a unique decomposition as a product of disjoint cycles, and that two permutations are
conjugate if and only if they have the same cycle type, which is the collection of all cycle lengths,
with multiplicities. Ordering the lengths decreasingly leads to a partition µ = µ1 ≥ . . . ≥ µn > 0
of d. Assume that the numbers 1, 2, . . . , d occur m1,m2, . . . ,md times, respectively in µ; that
is, mk is the number of k-cycles in our permutation. We shall also refer to the cycle type by the
notation (m). Thus, the conjugacy classes in Sd are labelled by (m)’s such that

∑
k k ·mk = d.

It follows that the number of irreducible characters of Sd is the number of partitions of d. What
is also true but unexpected is that there is a natural way to assign irreducible representations
to partitions, as we shall explain.

24.2 Proposition. The conjugacy class of cycle type (m) has order

d!∏
mk! ·

∏
kmk

.

Proof. By the orbit-stabiliser theorem, applied to the conjugation action of Sd on itself, it suffices
to show that the centraliser of a permutation of cycle type (m) is

∏
mk! ·

∏
kmk . But an element

of the centraliser must permute the k-cycles, for all k, while preserving the cyclic order of the
elements within. We get a factor of mk! from the permutations of the mk k-cycles, and kmk

from independent cyclic permutations within each k-cycle.
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(24.3) The irreducible characters of Sd

Choose N > 0 and denote by pµ or p(m) the product of power sums

pµ(z) =
∏
k

(zµk
1 + zµk

2 + · · ·+ zµk
N ) =

∏
k>0

(zk
1 + · · ·+ zk

N )mk ;

note that if we are to allow a number of trailing zeroes at the end of µ, they must be ignored in
the first product. For any partition λ of d with no more than N parts, we define a function on
conjugacy classes of Sd by

ωλ(m) = coefficient of zλ+δ in p(m)(z) ·∆(z).

It is important to observe that ωλ(m) does not depend on N , provided the latter is larger
than the number of parts of λ; indeed, an extra variable zN+1 can be set to zero, p(m) is
then unchanged, while both ∆(z) and zλ+δ acquire a factor of z1z2 · · · zN , leading to the same
coefficient in the definition.

Anti-symmetry of p(m)(z)·∆(z) and the definition of the Schur functions lead to the following

24.4 Proposition. p(m)(z) =
∑

λ ωλ(m) · sλ(z), the sum running over the partitions of d with
no more than N parts.

Indeed, this is equivalent to the identity

p(m)(z) ·∆(z) =
∑
λ

ωλ(m) · aλ+δ(z),

which just restates the definition of the ωλ.

24.5 Theorem (Frobenius character formula). The ωλ are the irreducible characters of the
symmetric group Sd.

We will prove that the ωλ are orthonormal in the inner product of class functions on Sd. We will
then show that they are characters of representations of Sd, which will imply their irreducibility.
The second part will be proved in conjunction with Schur-Weyl duality.

Proof of orthonormality. We must show that for any partitions λ,ν,∑
(m)

ωλ(m) · ων(m)∏
mk! ·

∏
kmk

= δλν . (24.6)

We will prove these identities simultaneously for all d, via the identity∑
(m);λ,ν

ωλ(m) · ων(m)∏
mk! ·

∏
kmk

sλ(z)sν(w) ≡
∑
λ

sλ(z)sλ(w) (24.7)

for variables z,w, with (m) ranging over all cycle types of all symmetric groups Sd and λ,ν
ranging over all partitions with no more than N parts of all integers d. Independence of the
Schur polynomials implies (24.6).

From Proposition 24.4, the left side in (24.7) is

∑
(m)

p(m)(z) · p(m)(w)∏
mk! ·

∏
kmk

,
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which is also ∑
(m)

∏
k>0

(zk
1 + · · ·+ zk

N )mk(wk
1 + · · ·+ wk

N )mk

mk! · kmk

=
∑
(m)

∏
k>0

(
∑

p,q(zpwq)k/k)mk

mk!
=
∏
k>0

exp
{∑

p,q
(zpwq)k/k

}
= exp

{∑
p,q;k

(zpwq)k/k
}

= exp
{
−
∑

p,q
log(1− zpwq)

}
=
∏
p,q

(1− zpwq)−1.

We are thus reduced to proving the identity∑
λ

sλ(z)sλ(w) =
∏
p,q

(1− zpwq)−1. (24.8)

There are (at least) two ways to proceed. We can multiply both sides by ∆(z)∆(w) and show
that each side agrees with the N ×N Cauchy determinant det[(1− zpwq)−1]. The equality

det[(1− zpwq)−1] = ∆(z)∆(w)
∏
p,q

(1− zpwq)−1

can be proved by clever row operations and induction on N . (See Appendix A of Fulton-Harris,
Representation Theory, for help if needed.) On the other hand, if we expand each entry in the
matrix in a geometric series, multi-linearity of the determinant gives

det[(1− zpwq)−1] =
∑

l1,...,lN≥0

det[(zpwq)lq ]

=
∑

l1,...,lN≥0

det[zlq
p ] ·

∏
q

w
lq
q

=
∑

l1,...,lN≥0

al(z)wl =
∑

l1>l2>···>lN≥0

al(z)al(w),

the last identity from the anti-symmetry in l of the al. The result is the left side of (24.8)
multiplied by ∆(z)∆(w), as desired.

Another proof of (24.8) can be given by exploiting the orthogonality properties of Schur
functions and a judicious use of Cauchy’s integration formula. Indeed, the left-hand side Σ(z,w)
of the equation has the property that

1
N !

∮
· · ·
∮

Σ(z,w−1)f(w)∆(w)∆(w−1)
dw1

2πiw1
· · · dwN

2πiwN
= f(z)

for any symmetric polynomial f(w), while any homogeneous symmetric Laurent polynomial
containing negative powers of the wq integrates to zero. (The integrals are over the unit circles.)
An N -fold application of Cauchy’s formula shows that the same is true for

∏
p,q(1− zpw

−1
q )−1,

the function obtained from the right-hand side of (24.8) after substituting wq ↔ w−1
q , subject

to the convergence condition |zp| < |wq| for all p, q. I will not give the detailed calculation, as
the care needed in discussing convergence makes this argument more difficult, in the end, than
the one with the Cauchy determinant, but just observe that the algebraic manipulation

∆(w)∆(w−1)
w1 · · ·wN

∏
p,q(1− zpw

−1
q )

=

∏
p6=q(wq − wp)∏
p,q(wq − zp)
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and the desired integral is rewritten as

1
N !

∮
· · ·
∮ ∏

p6=q(wq − wp)∏
p,q(wq − zp)

f(w)
dw1

2πi
· · · dwN

2πi
= f(z),

for any symmetric polynomial f . For N = 1 one recognises the Cauchy formula; in general, we
have simple poles at the zp, to which values the wq are to be set, in all possible permutations.
(The numerator ensures that setting different w’s to the same z value gives no contribution).
Note that, if f is not symmetric, the output is the symmetrisation of f .

(24.9) Proof of the key theorems
We now prove the following, with a single calculation:

1. The ωλ are characters of representations of Sd.

2. Every Schur polynomial is the character of some representation of U(N).

3. The Schur-Weyl duality theorem.

Note that (1) and (2) automatically entail the irreducibility of the corresponding representations.
Specifically, we will verify the following

24.10 Proposition. The character of (CN )⊗d, as a representation of Sd ×U(N), is∑
λ
ωλ(m) · sλ(z),

with the sum ranging over the partitions of d with no more than N parts.

The character is the trace of the action of M := σ × diag[z1, . . . , zN ], for any permutation σ
of cycle type (m). By Lemma 22.6, (CN )⊗d breaks up as a sum

⊕
Wi ⊗ Vi of tensor products

of irreducible representations of Sd and U(N), respectively. Collecting together the irreducible
representations of U(N) expresses the character of (CN )⊗d as∑

λ
χλ(m) · sλ(z),

for certain characters χλ of Sd. Comparing this with the proposition implies (1)–(3) in our list.

Proof. Let e1, . . . , eN be the standard basis of CN . A basis for (CN )⊗d is ei1 ⊗ ei2 ⊗ · · · ⊗ eid ,
for all possible indexing functions i : {1, . . . , d} → {1, . . . , N}. Under M , this basis vector gets
transformed to zi1 · · · zid · eiσ(1)

⊗ eiσ(2)
⊗ · · · ⊗ eiσ(d)

. This is off-diagonal unless ik = iσ(k) for
each k, that is, unless i is constant within each cycle of σ. So the only contribution to the trace
comes from such i.

The diagonal entry for such a i is a product of factors of zk
i for each k-cycle, with an

appropriate i. Summing this over all these i leads to∏
k>0

(zk
1 + · · ·+ zk

N )mk = p(m)(z),

and our proposition now follows from Prop. 24.4.
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