
Riemann Surfaces: Problem Sheet 3

Starred questions are more difficult; treat them as optional. Some questions are provided by the courtesy of
Dr. A. Beardon.

Problem 1. Describe the topology of the Riemann surface wn − zn =1 in   �
2 .

Problem 2. The cross-ratio z1 ,z2;z3, z4{ } of four distinct points in   ̧
1 is the number 

z1 − z2

z1 − z4

z3 − z2

z3 − z4

. One

sees easily that z1 ,z2;z3, z4{ } can take all complex values other than 0,1, ∞ .

(a) Two ordered quadruple of points are related by a Möbius transformation iff the cross-ratios agree. (Hint:
The equation z, z2; z3 ,z4{ } = ′ z , ′ z 2; ′ z 3 , ′ z 4{ } defines the desired Möbius transformation   z a ′ z )

(b) If z1 ,z2;z3, z4{ } = , show that the possible values of cross-ratios under reordering the points are
, −1,1 − , 1 −( )−1

, −1( ) and −1( ) . 

(c) Let ( ) =
4 2 − +1( )3

27 2 −1( )2 . Show that two unordered quadruples can be transformed to each other if their

cross-ratios , ′ (taken in any ordering) satisfy ( ) = ′ ( ) . 

(d) Let e1,2 =℘ 1,2( ) , e3 =℘ 1 + 2( ) . If = e1 ,e2;e3,∞{ } = e1 − e2( ) e3 − e2( ) , show that

( ) =
g2

3

g2
3 − 27g3

2 .

Remark. It follows that two Riemann surface covers of   ̧
1 , branched at precisely four points, are analytically

isomorphic iff the two sets of branch points are related by a Möbius transform. (Cf. Lect. 9).

Problem 3. Prove the addition theorem for the ℘−function:

1 1 1

℘(u) ℘(v) ℘(w)

′ ℘ (u) ′ ℘ (v) ′ ℘ (w)

= 0 ,  iff: two variables agree, or u + v + w = 0 mod L( ) .

Hint: Fix v and w (not in L) and view the determinant as an elliptic function of u. The case v + w ∈L
requires separate treatment.

Problem 4. Which of the following Riemann surfaces is a “Galois cover” of 
  
� z( ) ? Recall that a cover

: R → S is Galois if there is a group Γ of automorphisms of R, commuting with the projection , which
acts simply transitively on the inverse images −1 s( ) of most points s.

(a) w2 = 4z 3 − g2z − g3

(b) wn − zn =1
(c)* w3 + z + z 2 = w2 + wz (Hint: look at the points over z = 0 ).
(d) w2 − 2zw + z3 −1 (Hint: Complete the square to spot the automorphism).
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Problem 5. Let R be the “hyperelliptic” Riemann surface obtained by compactifying w2 = f (z), where f z( )
is a polynomial of degree 2g + 2 with simple roots.

(a) Verify that the differential dz has simple zeroes over the zeroes of f, and poles of order 2 at infinity.
(b) Show that no expression (z)dz , with   f ∈� z( ) , can define a global holomorphic differential on R. (E.g,
check that (z)dz has poles on R over any point in the finite plane where f does).
(c) Show that a meromorphic function on R splits as 0 z( ) + 1 z( ) w , with 

  0 ,1 z( ) ∈� z( ) , into its even and
odd parts under the automorphism   w a −w of R.
(d) Show that a holomorphic differential on R has the form z( )dz w , where is a polynomial of degree less
than g. Conclude that the ratios of holomorphic differentials generate the subfield   � z( ) ⊂ � R( ) .

Problem 6. Let : R → S be a holomorphic map of degree d > 0 of compact Riemann surfaces and let f be a
meromorphic function on R. 
(a) Show that any symmetric polynomial in the values f P1( ), f P2( ),…, f Pd( ) of f at the d points in −1 s( )
(repeated according to their valencies), as s varies over S, defines a meromorphic function on S.
Hint: Use the local form of a holomorphic map; explain, to handle higher valencies, why a meromorphic
function of z, which is invariant under   z a e2 i n ⋅ z , defines a meromorphic function of zn .
(b) Conclude from here that every meromorphic function on R satisfies a polynomial equation of degree d
with coefficients in   � S( ) , f d + pd−1 s( ) f d−1 +…+ p1 s( ) f + p0 s( ) = 0 . 
Hint: Use part (a), with the elementary symmetric functions.

Problem 7*. Prove Part (c) of the theorem in Lecture 12: 
Let R be a compact connected Riemann surface,   : R →¸

1 a branched cover of degree d,   f : R → � ∪ {∞} a
meromorphic function with the property that, for some value   a ∈¸

1 , the function f takes d distinct values at
the d points of R projecting to a under . Then every meromorphic function g on R is a rational function in z
and f (z really stands for the function   zo ).

(a) Show, using Problem 3, that 

Fz X( ) = X − f (P)( )
P∈ −1 z( )∏ , Gz X( ): = Fz X( )⋅

g P( )
X − f P( )P∈ −1 z( )∑

define polynomials in X whose coefficients are rational functions of z. (Repeated factors are needed,
according to the valencies of ).
(b) For any   z0 ∈¸

1 over which f and g have no poles, and P ∈ −1 z( ) , show that 

Gz0
f (P)( ) = g P( )⋅ ′ F z0

f (P)( ) ,

where ′ F z (X):= dFz dX . (You may treat the f P( ) and g P( ) as arbitrary numbers).
(c) Show that, with P ranging over R, ′ F z= (P) f (P)( ) defines a meromorphic function which does not vanish
identically on R.
Hint: If, at some P, ′ F z= (P) f (P)( ) = 0 , then f P( ) is a multiple root of Fz X( ); and then f takes fewer than d
distinct values over −1 z( ) .
(d) Conclude that g P( ) = Gz (P) f (P)( ) ′ F z( P) f (P)( ) gives a rational expression of g in terms of z and f.

C. Teleman, Lent Term 2001



Problem 8. Recall that a group Γ acts properly discontinuously on a topological space X iff every x ∈X has
a neighbourhood U whose transforms ⋅U , as ranges over Γ, are disjoint. Prove that every group of
automorphisms of �, acting properly discontinuously, is one of the following:

(i) 0{ } ; 
(ii)   ü ⋅ ,   ∈�

∗ , acting by translations; 
(iii)   ü ⋅ +ü ⋅ ,   , ∈� with   ⋅ ∉ä , acting by translations.

Conclude that the only Riemann surfaces whose universal cover is � are: 
� itself,   �

∗ , and the compact surfaces of genus 1.

Problem 9. Show that any holomorphic map from � to a compact Riemann surface of genus greater than 1 is
constant. 

Problem 10. (a) Show that the set of matrices 
  

a b

c d
 
 
 

 
 
 ∈SL 2;ü( ) , with a and d odd and b and c even, is a

subgroup. Denote its quotient by ±1{ } by Γ 2( ) .

(b) Show that Γ 2( ) acts freely on the upper-half plane 
  
H:= z Im z( ) > 0{ } .

(c)* Show that the map   :H → � sending to e1 − e2( ) e3 − e2( ) is invariant under Γ 2( ) . Here, e1,2 ,3 are the
values of the ℘-function with periods and at the half-lattice points 2 , 2 , +( ) 2 .

Remark*: The map can be shown to be holomorphic and locally one-to-one. Moreover, it establishes a
bijection between the quotient   H Γ 2( ) and   � − 0,1{ } . This realizes H as the universal covering surface of

  � − 0,1{ } . With some work, we could extract a proof of these facts from what we know; for instance, by
virtue of Prob. 2(c), ( )( ) = g2

3 g2
3 − 27g3

2( ) is the “modular function J( ) ” discussed in Lect. 9 (see
notes), which was shown to establish a bijection of   H SL 2;ü( ) with �. There are six possible values of

( ) for a generic J( ) . Now, one can check that   ̧ SL 2;ü( ) Γ 2( ) = S3 , the symmetric group on three
letters, and the six values of ( ) , for fixed J( ) , correspond to the six orderings of the e’s; etc.(See, e.g.,
Cohn, Riemann Surfaces, §4.6 and §6.3).

Analytic Extensions

Problem 11. Show that the power series 

f z( ) = z 2n

=
n=0

∞∑ z + z2 + z 4 + z8 + …

has radius of convergence 1, and that there is a dense subset S of the unit circle such that f rz( ) → ∞ as
r → 1− , if z ∈S . Conclude that there is no analytic extension of f outside the unit circle.

In practice, analytic continuation is rarely performed by successive Taylor expansions. Two
alternative methods are illustrated below.

Problem 12. (Reflection Principle) Let f be a continuous function in the semi-disk {z | z < 1,Im z( ) ≥ 0},
holomorphic in the interior of that region. Assume that f takes only real values on the diameter −1,1( ) . Show
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that f can be analytically extended to the entire disk, by defining f z ( ) = f z( ) when Im z( ) < 0 .
Note: The result is much easier if you assume that f extends analytically a little bit below the diameter. For a
star, try to do without that assumption by using contour integrals.

Problem 13. (The Γ-function) Here, you prove that the integral Γ z( ) := tz−1e−tdt
0

∞

∫ , which converges only

when Re z( ) > 0 , extends to a meromorphic function of z over all of �. 

(a) Find an estimate to show that the (improper) integral tz−1e−tdt
0

∞

∫ converges, if Re z( ) > 0 . 

(b) Establish, for Re z( ) > 0 , the formula Γ z +1( )= z ⋅ Γ z( ) . (Use integration by parts over a closed
subinterval of 0,∞( ) , and show that the boundary terms vanish in the limit).

(c) Assume that you can differentiate with respect to z under the integral sign when Re z( ) > 0 (cf. (d)). Use
(b) to show that Γ extends to a meromorphic function on �, with poles at the non-positive integers. What are
the orders of the poles?

(d)* Prove that you can differentiate with respect to z under the integral sign, if Re z( ) > 0 :

dΓ
dz

z( ):= lim
w→z

Γ w( ) − Γ z( )
w − z

= tz−1 ⋅ lnt ⋅e−tdt
0

∞

∫ .

In particular, Γ z( ) is analytic in the right half-plane.

Suggestion: Show that the difference

lim
w→ z

Γ w( ) − Γ z( )
w − z

− tz−1 ⋅ ln t ⋅ e−tdt
0

∞

∫ =
t w−z −1

w − z
− lnt

 
  

 
  ⋅t

z−1 ⋅ e−tdt
0

∞

∫

goes to 0 as w → z by verifying the estimate 

t w−z −1

w − z
− ln t ≤ w − z ⋅ lnt( )2 ⋅ t

± w−z

and checking convergence of the relevant integral. The estimate is a special case of the inequality

f b( ) − f a( )
b − a

− ′ f a( ) ≤ b − a ⋅ sup
s∈ a, b[ ]

′ ′ f s( ) (*)

valid for a twice continuously differentiable function f on a,b[ ] (for instance, by a double application of
Lagrange’s mean-value theorem to Re f and Im f ). Let a = 0 , b = 1 , f s( ) = ts w−z( ) w − z( )
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