
The Haagerup TQFT is not a gauge theory

A recurring conjecture in the math literature, inspired by Moore and Seiberg, states that the

Witt equivalence class of every modular tensor category contains a representative Chern-

Simons gauge theory of some compact group. While a different source of fusion categories

has long been known (the Haagerup construction), a stronger version of the conjecture, as-

serting braided equivalence instead of Witt equivalence, appears to still circulate. While this

stronger conjecture is easily falsified by a numerical check of Frobenius-Perron dimensions,

this note gives a human-readable proof that the Haagerup category is a counterexample.

I focus on the original Haagerup fusion category. Six objects, three each of FP dimensions 1 and
(3 +

√
13)/2 give the FP dimension of the tensor category as

d = 3 ·

(
1 +

11 + 3
√

13

2

)
= 3
√

13 · 3 +
√

13

2
≈ 35.725.

I claim that d2, the FP dimension of the Haagerup center, cannot be the dimension of the braided
fusion category of Chern-Simons theory of any compact group G: the magnitude and minimal
arithmetic at the prime 13 rule out all candidates. The same argumnent with 17 should rule out the
Asaeda-Haagerup categories, but I ran out of patience. Those categories have d = 8

√
17 ·(4+

√
17).

Specifically, I will check that

• In any gauge theory leading to this dimension, some multiples of 13 must appear among
the twistings (levels shifted by dual Coxeter numbers);
• The exceptional groups at the smallest such levels are too large to contribute1;
• Twisting 39 is too high for any group, and the viable cases at twistings 13 and 26 cannot

in any combination acount for the cyclotomic unit (=sin) factorization of d.

The FP dimension D2 of a category obtained from gauge theory is2

(1) D2 = D(G, k)2 = ± #π0(G)2 ·N

∆
(

expπ ρ∨

k

)2 ,
• N is the number of Verlinde points in the maximal torus of G,
• ρ∨ ∈ g↔ ρ ∈ g∗ in the basic inner product (when ‖α0‖2 = 2),
• k is the vector of twistings,
• ρ∨/k is the vector with suitably normalized components in each simple factor of g,
• ± sets the value to positive.

Alternatively, (ρ∨/k) ↔ ρ under the inner product defined by the quadratic form k, but that
formulation conceals the dependence on the level.

The denominator is the volume of the smallest Verlinde conjugacy class. It is the square of∏
k;α>0

2 sin

(
π〈α|ρ〉
k

)
factoring over the positive roots, with the respective ρ, k. We have 〈α|ρ〉 ≤ k− 1, achieved only for
the highest root α0 and at level 0. In the simply laced case, 〈α|ρ〉 is the number of simple roots in
α; for the E series, the sequences with multiplicities are

E6 :162535455463738291101111, E7 : 172636465665758494103113122132141151161171

E8 :182737475767778696106116125135144154164174183193202212222232241251261271281291

1Save for E6 level 1, which is group-like and so of no use.
2Except at level zero, when π1G has torsion.
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whence I got ≈ 41, 587 for E7 and ≈ 119, 271 for E8. Along with the computation of F4 and G2 at
the lowest relevant levels (4 and 9), this excludes any helpful appearance of exceptional groups.

Cyclotomic refresher. Note the following factorizations in the cyclotomic ring Z[ζ], ζ = exp πi
13 :

√
13 = −(ζ − ζ̄) · · · · · (ζ6 − ζ̄6) =

∏6

j=1
2 sin

jπ

13

13 + 3
√

13

2
= (ζ2 − ζ̄2)2(ζ5 − ζ̄5)2(ζ6 − ζ̄6)2 =

(
2 sin

2π

13
· 2 sin

5π

13
· 2 sin

6π

13

)2

(*)

13− 3
√

13

2
= (ζ − ζ̄)2(ζ3 − ζ̄3)2(ζ9 − ζ̄9)2 =

(
2 sin

π

13
· 2 sin

3π

13
· 2 sin

4π

13

)2

The sine expressions are unique: the factors 2 sin(πr/13), 1 ≤ r ≤ 6, are linearly independent in
the group Q[ζ]×. With 52nd or 104th roots included, relations between the respective sines are
generated from the doubling formula sin(2x) = 2 sinx · sin(π2 − x) and the symmetries of sin.

Incidentally, relevant to the Asaeda-Haagerup factor we have

17− 4
√

17 =

(
2 sin

π

17
· 2 sin

2π

17
· 2 sin

4π

17
· 2 sin

8π

17

)2

,

with 3, 5, 6 and 7 giving the conjugate 17 + 4
√

17.

Proof of mismatch. If d = D, then π0G = 1 or 3, on divisibility grounds in (1). We see from

(2) 3
√

13 ·
√

13 + 3

2
·
∏

2 sin

(
π〈α|ρ〉
k

)
= #π0G ·

√
N

that 13|N . Squaring leaves overt roots of 13 on the left, but none on the right. The ks must then
include multiples of 13, in more than one sin factor. So N = 132M , and from (*) we get

(3) 3 ·
∏
α>0

2 sin

(
π〈α|ρ〉
k

)
= #π0G ·

√
M ·

(
2 sin

π

13
· 2 sin

3π

13
· 2 sin

4π

13

)2

.

It turns out that we cannot replicate the right-hand combination of sines from any group; but for
ease, I’ll use the magnitude of D to reduce to just a few checks.3 The table below shows that
sin 4π

13 cannot appear at an acceptably low level and rank. We need ` ≥ 5 (and also n ≥ 6) for
SU(n); ` ≥ 6 and n ≥ 9, or else ` ≥ 8 and n ≥ 7, for Spin(n); and ` ≥ 4 for Sp(n). The estimate
| sinx| ≤ |x| suffices to rule these out, along with all higher levels (D increases with the level).

Classical groups at low levels `; n = k − `.

Group ` = 1 2 3 4 5

SU(n) k − 1

√
k(k − 2)

2 sin π
k

k
√
k − 3

(2 sin π
k )2 · 2 sin 2π

k

k3/2
√
k − 4∏3

j=1(2 sin jπ
k )4−j

k2
√
k − 5∏4

j=1(2 sin jπ
k )5−j

Spin(n+ 2) 2 2
√
k

√
k/ sin π

2k

2k

(2 sin π
k )2

2k∏4
j=1 2 sin jπ

2k

Sp(n− 1)

√
2k

2 sin π
k

2k∏4
j=1 2 sin jπ

2k

k3/2∏6
j=1

(
2 sin jπ

2k

)ε(j)
ε(j) = 2, 2, 1, 2, 1, 1

(2k)2∏8
j=1

(
2 sin jπ

2k

)ε(j)
ε(j) = 3, 3, 2, 2, 2, 2, 1, 1

way too big

3These can be pared further, by incorporating divisibility by 3 into the discussion.
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Argument from magnitude. If arithmetic makes you unhappy, one can just argue on the size of D
with a few additional checks. One must allow possibile reductions by dividing out a finite central
subgroup Z in a product of factors; D drops by a factor of #Z.4

For a fixed group, numbers grow in the level (D ∼ C · kdimG/2; N alone ensures a lower bound in

scaling, as in krank/2). The table also shows growth in the rank, for ` = 1, . . . , 5. The following
numbers rule out semi-simple ranks above 2 when 13|k, save for very low levels:

• SU(4) = Spin(6) level 5, D ≈ 58.93;
level 7 will be out of reach, even after reduction;
• Spin(7), level 5, D ≈ 96.9;
• Sp(3) level 4, D ≈ 105.

In low rank,

(1) SO(3), k = 26: D =
√

13/2 sin π
26 ≈ 14.9562, no reduction possible.

(2) SU(2), k = 13: D =
√

13/2/ sin π
13 ≈ 10.65, reducible to

√
13/2 sin π

13 ≈ 7.533.

(3) SU(2), k = 39: D =
√

39/2/ sin π
39 ≈ 54.87, reducible to 38.8.

(4) SO(3), k = 52: D ≈ 42.225 too large, as are all higher levels.
(5) SO(4), k = (13, 13): D = 13/4 sin2 π

13 ≈ 56.74. Spin(4) is double.

(6) SU(3), k = 13: D ≈ 105.749. Can be reduced by a factor of
√

3 but no help.

(7) Sp(2), k = 13: D = 26/
∏4
j=1 2 sin πj

26 ≈ 341.84;

(8) G2, k = 13: D ≈ 477;

Viable are cases (1) and (2), with G = SO(3)×H and DH ≈ 35.725/14.95 ≈ 2.4, and respectively
in a configuration G = SU(2)×{±1}H, with dimension D = 1

2 · 10.65×DH , so DH ≈ 6.72. But no
factors that small exist that involve sin π

13 .

The viable low-level options, at k = 13 and 26, are

(9) SU(11), ` = 2: D =
√

143/2 sin
(
π
13

)
≈ 24.984,

and one can factor out
√

11 such as for U(11) to get
√

13/2 sin π
13 ≈ 7.533;

(10) Sp(11), ` = 1: D =
√

13/2/ sin π
13 ≈ 10.653; one can factor out a

√
2 to get 7.533;

(11) Spin(12), ` = 3: D =
√

13/ sin π
26 ≈ 29.91; once can take out a factor of 2;

(12) Sp(24) level 1: D =
√

13/ sin π
26 ≈ 29.91, and one may factor out 2;

they are excluded by the same lack of tiny co-factors.

Some non-viable or useless options for your enjoyment:

• Sp(10) level 2: D ≈ 341.84
• SU(10) level 3: D ≈ 191; one may factor out a

√
10 to get 62.05....

• SU(12) level 1: D =
√

12 (no use)
• Spin(13) level 2: D = 2

√
13 (no use)

• Spin(14) level 1: D = 2 (no use)
• Spin(25) level 3: D =

√
26/ sin π

52 ≈ 84.45;

• Sp(37) level 1: D =
√

39/2/ sin π
39 ≈ 54.87, reduction by

√
2 possible to 38.8;

• Spin(38) level 3: D =
√

39/ sin π
78 ≈ 155

4The twisting may preclude reduction before adding cofactors, and the drop may be limited by
√
#Z, as in

SU(n) → U(n).


