The Haagerup TQFT is not a gauge theory

A recurring conjecture in the math literature, inspired by Moore and Seiberg, states that the Witt equivalence class of every modular tensor category contains a representative ChernSimons gauge theory of some compact group. While a different source of fusion categories has long been known (the Haagerup construction), a stronger version of the conjecture, asserting braided equivalence instead of Witt equivalence, appears to still circulate. While this stronger conjecture is easily falsified by a numerical check of Frobenius-Perron dimensions, this note gives a human-readable proof that the Haagerup category is a counterexample.

I focus on the original Haagerup fusion category. Six objects, three each of FP dimensions 1 and $(3+\sqrt{13}) / 2$ give the FP dimension of the tensor category as

$$
d=3 \cdot\left(1+\frac{11+3 \sqrt{13}}{2}\right)=3 \sqrt{13} \cdot \frac{3+\sqrt{13}}{2} \approx 35.725
$$

I claim that d^{2}, the FP dimension of the Haagerup center, cannot be the dimension of the braided fusion category of Chern-Simons theory of any compact group G : the magnitude and minimal arithmetic at the prime 13 rule out all candidates. The same argumnent with 17 should rule out the Asaeda-Haagerup categories, but I ran out of patience. Those categories have $d=8 \sqrt{17} \cdot(4+\sqrt{17})$.

Specifically, I will check that

- In any gauge theory leading to this dimension, some multiples of 13 must appear among the twistings (levels shifted by dual Coxeter numbers);
- The exceptional groups at the smallest such levels are too large to contribute ${ }^{1}$;
- Twisting 39 is too high for any group, and the viable cases at twistings 13 and 26 cannot in any combination acount for the cyclotomic unit $(=\sin)$ factorization of d.

The FP dimension D^{2} of a category obtained from gauge theory is ${ }^{2}$

$$
\begin{equation*}
D^{2}=D(G, k)^{2}= \pm \frac{\# \pi_{0}(G)^{2} \cdot N}{\Delta\left(\exp \pi \frac{\rho^{\vee}}{\mathbf{k}}\right)^{2}} \tag{1}
\end{equation*}
$$

- N is the number of Verlinde points in the maximal torus of G,
- $\boldsymbol{\rho}^{\vee} \in \mathfrak{g} \leftrightarrow \boldsymbol{\rho} \in \mathfrak{g}^{*}$ in the basic inner product (when $\left\|\alpha_{0}\right\|^{2}=2$),
- \mathbf{k} is the vector of twistings,
- $\boldsymbol{\rho}^{\vee} / \mathbf{k}$ is the vector with suitably normalized components in each simple factor of \mathfrak{g},
- \pm sets the value to positive.

Alternatively, $\left(\rho^{\vee} / \mathbf{k}\right) \leftrightarrow \rho$ under the inner product defined by the quadratic form \mathbf{k}, but that formulation conceals the dependence on the level.

The denominator is the volume of the smallest Verlinde conjugacy class. It is the square of

$$
\prod_{k ; \alpha>0} 2 \sin \left(\frac{\pi\langle\alpha \mid \rho\rangle}{k}\right)
$$

factoring over the positive roots, with the respective ρ, k. We have $\langle\alpha \mid \rho\rangle \leq k-1$, achieved only for the highest root α_{0} and at level 0 . In the simply laced case, $\langle\alpha \mid \rho\rangle$ is the number of simple roots in α; for the E series, the sequences with multiplicities are

$$
\begin{aligned}
& E_{6}: 1^{6} 2^{5} 3^{5} 4^{5} 5^{4} 6^{3} 7^{3} 8^{2} 9^{1} 10^{1} 11^{1}, \quad E_{7}: 1^{7} 2^{6} 3^{6} 4^{6} 5^{6} 6^{5} 7^{5} 8^{4} 9^{4} 10^{3} 11^{3} 12^{2} 13^{2} 14^{1} 15^{1} 16^{1} 17^{1} \\
& E_{8}: 1^{8} 2^{7} 3^{7} 4^{7} 5^{7} 6^{7} 7^{7} 8^{6} 9^{6} 10^{6} 11^{6} 12^{5} 13^{5} 14^{4} 15^{4} 16^{4} 17^{4} 18^{3} 19^{3} 20^{2} 21^{2} 22^{2} 23^{2} 24^{1} 25^{1} 26^{1} 27^{1} 28^{1} 29^{1}
\end{aligned}
$$

[^0]whence I got $\approx 41,587$ for E_{7} and $\approx 119,271$ for E_{8}. Along with the computation of F_{4} and G_{2} at the lowest relevant levels (4 and 9), this excludes any helpful appearance of exceptional groups.
Cyclotomic refresher. Note the following factorizations in the cyclotomic ring $\mathbb{Z}[\zeta], \zeta=\exp \frac{\pi i}{13}$:
\[

$$
\begin{align*}
\sqrt{13} & =-(\zeta-\bar{\zeta}) \cdots \cdots\left(\zeta^{6}-\bar{\zeta}^{6}\right)=\prod_{j=1}^{6} 2 \sin \frac{j \pi}{13} \\
\frac{13+3 \sqrt{13}}{2} & =\left(\zeta^{2}-\bar{\zeta}^{2}\right)^{2}\left(\zeta^{5}-\bar{\zeta}^{5}\right)^{2}\left(\zeta^{6}-\bar{\zeta}^{6}\right)^{2}=\left(2 \sin \frac{2 \pi}{13} \cdot 2 \sin \frac{5 \pi}{13} \cdot 2 \sin \frac{6 \pi}{13}\right)^{2} \tag{*}\\
\frac{13-3 \sqrt{13}}{2} & =(\zeta-\bar{\zeta})^{2}\left(\zeta^{3}-\bar{\zeta}^{3}\right)^{2}\left(\zeta^{9}-\bar{\zeta}^{9}\right)^{2}=\left(2 \sin \frac{\pi}{13} \cdot 2 \sin \frac{3 \pi}{13} \cdot 2 \sin \frac{4 \pi}{13}\right)^{2}
\end{align*}
$$
\]

The sine expressions are unique: the factors $2 \sin (\pi r / 13), 1 \leq r \leq 6$, are linearly independent in the group $\mathbb{Q}[\zeta]^{\times}$. With 52 nd or 104th roots included, relations between the respective sines are generated from the doubling formula $\sin (2 x)=2 \sin x \cdot \sin \left(\frac{\pi}{2}-x\right)$ and the symmetries of \sin.
Incidentally, relevant to the Asaeda-Haagerup factor we have

$$
17-4 \sqrt{17}=\left(2 \sin \frac{\pi}{17} \cdot 2 \sin \frac{2 \pi}{17} \cdot 2 \sin \frac{4 \pi}{17} \cdot 2 \sin \frac{8 \pi}{17}\right)^{2}
$$

with $3,5,6$ and 7 giving the conjugate $17+4 \sqrt{17}$.
Proof of mismatch. If $d=D$, then $\pi_{0} G=1$ or 3 , on divisibility grounds in (1). We see from

$$
\begin{equation*}
3 \sqrt{13} \cdot \frac{\sqrt{13}+3}{2} \cdot \prod 2 \sin \left(\frac{\pi\langle\alpha \mid \rho\rangle}{k}\right)=\# \pi_{0} G \cdot \sqrt{N} \tag{2}
\end{equation*}
$$

that $13 \mid N$. Squaring leaves overt roots of 13 on the left, but none on the right. The k s must then include multiples of 13 , in more than one sin factor. So $N=13^{2} M$, and from (*) we get

$$
\begin{equation*}
3 \cdot \prod_{\alpha>0} 2 \sin \left(\frac{\pi\langle\alpha \mid \rho\rangle}{k}\right)=\# \pi_{0} G \cdot \sqrt{M} \cdot\left(2 \sin \frac{\pi}{13} \cdot 2 \sin \frac{3 \pi}{13} \cdot 2 \sin \frac{4 \pi}{13}\right)^{2} \tag{3}
\end{equation*}
$$

It turns out that we cannot replicate the right-hand combination of sines from any group; but for ease, I'll use the magnitude of D to reduce to just a few checks. ${ }^{3}$ The table below shows that $\sin \frac{4 \pi}{13}$ cannot appear at an acceptably low level and rank. We need $\ell \geq 5$ (and also $n \geq 6$) for $\operatorname{SU}(n) ; \ell \geq 6$ and $n \geq 9$, or else $\ell \geq 8$ and $n \geq 7$, for $\operatorname{Spin}(n)$; and $\ell \geq 4$ for $\operatorname{Sp}(n)$. The estimate $|\sin x| \leq|x|$ suffices to rule these out, along with all higher levels (D increases with the level).

$$
\text { Classical groups at low levels } \ell ; n=k-\ell .
$$

Group	$\ell=1$	2	3	4	5
$\operatorname{SU}(n)$	$k-1$	$\frac{\sqrt{k(k-2)}}{2 \sin \frac{\pi}{k}}$	$\frac{k \sqrt{k-3}}{\left(2 \sin \frac{\pi}{k}\right)^{2} \cdot 2 \sin \frac{2 \pi}{k}}$	$\frac{k^{3 / 2} \sqrt{k-4}}{\prod_{j=1}^{3}\left(2 \sin \frac{j \pi}{k}\right)^{4-j}}$	$\frac{k^{2} \sqrt{k-5}}{\prod_{j=1}^{4}\left(2 \sin \frac{j \pi}{k}\right)^{5-j}}$
$\operatorname{Spin}(n+2)$	2	$2 \sqrt{k}$	$\sqrt{k} / \sin \frac{\pi}{2 k}$	$\frac{2 k}{\left(2 \sin \frac{\pi}{k}\right)^{2}}$	$\frac{2 k}{\prod_{j=1}^{4} 2 \sin \frac{j \pi}{2 k}}$
$\operatorname{Sp}(n-1)$	$\frac{\sqrt{2 k}}{2 \sin \frac{\pi}{k}}$	$\frac{2 k}{\prod_{j=1}^{4} 2 \sin \frac{j \pi}{2 k}}$	$\frac{k^{3 / 2}}{\prod_{j=1}^{6}\left(2 \sin \frac{j \pi}{2 k}\right)^{\varepsilon(j)}}$	$\frac{(2 k)^{2}}{\prod_{j=1}^{8}\left(2 \sin \frac{j \pi}{2 k}\right)^{\varepsilon(j)}}$	way too big
$\varepsilon(j)=2,2,1,2,1,1$	$\varepsilon(j)=3,3,2,2,2,2,1,1$				

[^1]Argument from magnitude. If arithmetic makes you unhappy, one can just argue on the size of D with a few additional checks. One must allow possibile reductions by dividing out a finite central subgroup Z in a product of factors; D drops by a factor of $\# Z .{ }^{4}$
For a fixed group, numbers grow in the level $\left(D \sim C \cdot k^{\mathrm{dim}} \mathrm{G} / 2 ; N\right.$ alone ensures a lower bound in scaling, as in $k^{\text {rank } / 2}$). The table also shows growth in the rank, for $\ell=1, \ldots, 5$. The following numbers rule out semi-simple ranks above 2 when $13 \mid k$, save for very low levels:

- $\mathrm{SU}(4)=\operatorname{Spin}(6)$ level $5, D \approx 58.93$;
level 7 will be out of reach, even after reduction;
- $\operatorname{Spin}(7)$, level $5, D \approx 96.9$;
- $\operatorname{Sp}(3)$ level $4, D \approx 105$.

In low rank,
(1) $\mathrm{SO}(3), k=26: D=\sqrt{13} / 2 \sin \frac{\pi}{26} \approx 14.9562$, no reduction possible.
(2) $\mathrm{SU}(2), k=13: D=\sqrt{13 / 2} / \sin \frac{\pi}{13} \approx 10.65$, reducible to $\sqrt{13} / 2 \sin \frac{\pi}{13} \approx 7.533$.
(3) $\mathrm{SU}(2), k=39: D=\sqrt{39 / 2} / \sin \frac{\pi}{39} \approx 54.87$, reducible to 38.8 .
(4) $\mathrm{SO}(3), k=52: D \approx 42.225$ too large, as are all higher levels.
(5) $\mathrm{SO}(4), k=(13,13): D=13 / 4 \sin ^{2} \frac{\pi}{13} \approx 56.74$. $\mathrm{Spin}(4)$ is double.
(6) $\mathrm{SU}(3), k=13: D \approx 105.749$. Can be reduced by a factor of $\sqrt{3}$ but no help.
(7) $\operatorname{Sp}(2), k=13: D=26 / \prod_{j=1}^{4} 2 \sin \frac{\pi j}{26} \approx 341.84$;
(8) $G_{2}, k=13: D \approx 477$;

Viable are cases (1) and (2), with $G=\mathrm{SO}(3) \times H$ and $D_{H} \approx 35.725 / 14.95 \approx 2.4$, and respectively in a configuration $G=\mathrm{SU}(2) \times_{\{ \pm 1\}} H$, with dimension $D=\frac{1}{2} \cdot 10.65 \times D_{H}$, so $D_{H} \approx 6.72$. But no factors that small exist that involve $\sin \frac{\pi}{13}$.

The viable low-level options, at $k=13$ and 26 , are
(9) $\mathrm{SU}(11), \ell=2: D=\sqrt{143} / 2 \sin \left(\frac{\pi}{13}\right) \approx 24.984$, and one can factor out $\sqrt{11}$ such as for $\mathrm{U}(11)$ to get $\sqrt{13} / 2 \sin \frac{\pi}{13} \approx 7.533$;
(10) $\mathrm{Sp}(11), \ell=1: D=\sqrt{13 / 2} / \sin \frac{\pi}{13} \approx 10.653$; one can factor out a $\sqrt{2}$ to get 7.533 ;
(11) $\operatorname{Spin}(12), \ell=3: D=\sqrt{13} / \sin \frac{\pi}{26} \approx 29.91$; once can take out a factor of 2 ;
(12) $\operatorname{Sp}(24)$ level 1: $D=\sqrt{13} / \sin \frac{\pi}{26} \approx 29.91$, and one may factor out 2 ;
they are excluded by the same lack of tiny co-factors.
Some non-viable or useless options for your enjoyment:

- $\operatorname{Sp}(10)$ level 2: $D \approx 341.84$
- $\operatorname{SU}(10)$ level $3: D \approx 191$; one may factor out a $\sqrt{10}$ to get $62.05 \ldots$.
- $\mathrm{SU}(12)$ level 1: $D=\sqrt{12}$ (no use)
- Spin(13) level 2: $D=2 \sqrt{13}$ (no use)
- Spin(14) level 1: $D=2$ (no use)
- Spin(25) level 3: $D=\sqrt{26} / \sin \frac{\pi}{52} \approx 84.45$;
- $\mathrm{Sp}(37)$ level 1: $D=\sqrt{39 / 2} / \sin \frac{\pi}{39} \approx 54.87$, reduction by $\sqrt{2}$ possible to 38.8 ;
- Spin(38) level 3: $D=\sqrt{39} / \sin \frac{\pi}{78} \approx 155$

[^2]
[^0]: ${ }^{1}$ Save for E_{6} level 1, which is group-like and so of no use.
 ${ }^{2}$ Except at level zero, when $\pi_{1} G$ has torsion.

[^1]: ${ }^{3}$ These can be pared further, by incorporating divisibility by 3 into the discussion.

[^2]: ${ }^{4}$ The twisting may preclude reduction before adding cofactors, and the drop may be limited by $\sqrt{\# Z}$, as in $\mathrm{SU}(n) \rightarrow \mathrm{U}(n)$.

