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Abstract

For a compact monotone symplectic manifold X with Hamiltonian action of a com-
pact Lie groupG and smooth symplectic reduction, we relate its gauged 2-dimensional
A-model to the A-model of X//G. This (long conjectured) result is parallel to the
(B-model!) quantization commutes with reduction theorem of Guillemin and Stern-
berg in quantum mechanics. Here, we spell out some of the precise statements, and
outline the proof of equality for the spaces of states (quantum cohomology). We also
indicate the way to some related results in the non-monotone case. Additional Floer
theory details will be included in a follow-up paper.

Main Results

Basic case. In Theorem 1, we equate the gauged quantum cohomology of a compact G-monotone1

symplectic manifold X under a Hamiltonian action of a connected compact group G with that of
its symplectic reduction at the anticanonical linearization:

QH∗LG(X) ∼= QH∗(X//G). (0.1)

This assumption was present, at least implicitly, in the physics-inspired literature on the A-model
QFT of the 1990s, in strong analogy with the quantum mechanics situation, recalled in §1. It was
the background of early quantum cohomolgy calculations, such as Batyrev’s formula [B].

The subscript LG indicates equivariance under the free loop group of G; its action on the Floer
complex will be described in §2. The gauged side thus incorporates twisted sectors, as in the case
of finite groups. The statement is subject to the known constraint that the quotient should be free:
even the orbifold case requires multiplicative adjustment, although an additive isomorphism holds.

Formality. With complex (or rational) coefficients, a stronger formality result describesQH∗(X//G)
as a quotient of QH∗G(X):

QH∗(X//G) ∼= QH∗G(X)⊗HG
∗ (ΩG) H

∗(BG). (0.2)

The tensor product is strict, with no higher Tor groups. Going forward, we will use complex
coefficients in cohomology without further comment.

∗Partially supported by NSF grant DMS-2306204
†Partially supported by the Simons Collaboration of Global Categorical Symmetries
1See below for our definition of G-monotone, stronger than monotone when G is non-abelian.
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Recall that SpecHG
∗ (ΩG), with its projection to SpecH∗(BG), is the total space of the Toda

integrable system (for the Langlands dual group G∨), a completely integrable algebraic symplectic
manifold [BFM]. Formula (0.2) restricts QH∗G(X) to the unit section SpecH∗(BG) of the Toda
space. This stronger result is a long intended application of the theory of gauged categories and 2D
TQFTs [T3]; additional details were described over time in numerous lectures, but the lack of as
single comprehensive account requires a slew of self-citations [T2, T4], for which the second author
apologizes. The remarkable success of algebro-geometric techniques in Gromov-Witten theory was
partly responsible for the delay in execution: it took time to accept this as a genuine Floer theory
result. We do not know an algebro-geometric proof.

Prior work. Our argument only addresses the additive isomorphism, and we rely on earlier work of
Wehrheim-Woodward [WW], Fukaya [F, DF] and, most recently, Xiao [X] to transfer the multiplica-
tive structure: this exploits the equivariant Lagrangian correspondence defined by the zero-fiber of
the moment map µ. Monotonicity and freedom of the G-action are essential for this part of the
argument. Removing those assumptions leads to deformations in the multiplicative structures.

Quantum Martin formula. When the symplectic quotients of X under G and its maximal torus T
are both smooth, their (classical) cohomologies are related by an explicit formula due to Shaun
Martin [M]. For projective manifolds, a quantum version of that formula was established by Gon-
zalez and Woodward [GW, Thm.1.6]. For us, that relation is, instead, a formal consequence of the
relation between the Toda spaces for G and T—the string topology domain wall of [T3, §5]—which
control the respective versions of Formula (0.2). The annihilator ideal in Martin’s description is the
portion of LT -equivariant quantum cohomology which is not fully LG-equivariant: it is intercepted
by the exceptional fiber of the Toda integrable system, but not by the unit section SpecH∗(BG).

Trapped cohomology. Our argument relies on Floer continuation under Hamiltonians K‖µ‖2, and
part of it extends to the case where X is monotone, but the G-linearization is not anticanonical:
namely, LG-descent from the stable Morse stratum in X to X//G always holds. Then, QH∗(X//G)
is additively expressed as a quotient of QH∗LG(X), with kernel the trapped cohomology : this is
defined from a Floer subcomplex of classes which stop at critical sets under Floer continuation.
This subcomplex is an ideal; however, just as in [F, DF, X], one sees a bulk deformation of the
multiplicative structure of QH∗G(X), vis-à-vis the quotient of QH∗LG(X). Since X//G is generally
not monotone, its QH∗ involves a Novikov parameter, which appears in the deformation class.

We do not know a description of the trapped ideal in terms of fixed-point localization in X;
this is surely related to the difficulty of an algebro-geometric approach. The trapped part can
be characterized in terms of the symplectic action, and is nicely connected with recent work of
Varolgunes et al. [V, BSV] on symplectic cohomology with supports: for instance, in Theorem 3 we
equate QH∗(X//G) additively with the LG-equivariant symplectic cohomology of X with supports
near µ−1(0). That discussion will be developed in our follow-up paper [PT], so the statement for
now functions as an announcement.

The non-monotone case. Assuming a genuinely equivariant Floer theory,2 the last part of our story
does not even require monotonicity of X. There is always a short exact sequence

0 −→ tHF ∗LG(X) −→ QH∗LG(X) −→ QH∗(X//G) −→ 0

describing the quotient aditively in terms of LG-equivariant and trapped Floer complexes of X. As
before, the multiplication on the quotient is deformed.

2See the Floer techniques paragraph below.
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One additional difficulty here arises when using a formally complete Novikov base ring for the
Floer complex. This conceals the trapped part tHF ∗LG(X): the torus of Seidel shift operators
degenerates in the classical limit, their spectrum becoming adically disconnected by the Novikov
variable; the trapped part is lost to infinitely large, or small, eigenvalues and does not appear
perturbatively in the Novikov parameter. This is may be why this geometric trapping phenomenon
was not flagged in prior work, even though the mismatch in ranks of quotients, in toric mirror
symmetry calculations, reveals it clearly (see also Remark 1.8).

Non-abelian G-monotonicity. We should now confess to a limitation of our present proof in the
case of non-abelian G. The simple argument we outline here, based on a monotone index estimate,
fails for non-abelian groups when X has fixed-points with moment image too close to zero. For
instance, when G = SU(2), we must avoid fixed points with weights 1 or 2. Generally, we require
no wall-crossings between the reductions of X and those of X × F , for the flag varieties F of G.
Equivalently, all dominant co-weights ξ of G must satisfy, for all ξ-fixed-points x ∈ X,

〈µ(x)|ξ〉 > 2〈ρ | ξ〉. (0.3)

If (0.3) fails, some G-equivariant cohomology may well be trapped at x. Such is the case for flag
varieties of G, or (say) for the SU(2) action on the Hirzebruch surface F1, when all cohomology
is trapped. Morally, the positivity of a small co-adjoint orbit breaks the G-transversal positivity
of X. Remarkably, the statements (0.1), (0.2) still seem to hold: a more sophisticated argument,
relying on the Rietsch mirrors of flag varieties, indicates the absence of LG-equivariant trapped
cohomology. We shall postpone that discussion to as subsequent paper, as it requires reconciling
mirrors of flag varities, as in [T3, §6], with our analysis of Floer continuation.

No Floer differentials? One undertone of the results is the possible formality of the G-equivariant
Floer complex of X after deformation by Hamiltonians K‖µ‖2. Namely, after a gauge transforma-
tion of the complex,3 we expect the only differentials on the spaces of orbits to be the topological
ones that execute the passage from plain to equivariant cohomology. It seems difficult to formulate
a robust claim, though; for instance, K‖µ‖2 need not satisfy the Morse-Bott property required to
define the Floer complex. For torus groups, a small shift of µ addresses this, but other perturbations
are needed in the non-abelian case, possibly leading to additional critical sets and differentials.

Floer techniques. If equivariant Floer theory works as expected, our statements carry straightfor-
ward generalizations, such as compatibility with the E2, E3 structures of TQFT, and the arguments
in our paper settle that. However, working outside the monotone case requires the technique of
virtual fundamental classes, for which the equivariant case is not yet fully developed. Without these
tools, the case of monotone X admits the work-around of family Floer methods over BG. (See §2
for the starting definition, but details will appear in [PT].) Thus, all claims in this paper concerning
non-monotone X are conditional on a good equivariant Floer theory : see e.g. [X, Assumption 1].

History. The conjectural form of Theorem 1 has long featured in lectures by the second author,
as a key application of the character theory of categorical group representations [T3]. It was first
announced as a theorem, with the outline of our current proof, in [T2, iv]; a plan for it had been
proposed in [T2, iii], but key Floer ingredients were missing. Some elements of our construction
have since appeared elsewhere, but we believe ours to be the first unified treatment.

3This is expected to be the conjugation by exp(W/~), where the superpotential W is the fundamental solution to
the D-module defined by QH∗

G(X), and ~ is the equivariant parameter for loop rotation.
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1. Background and Statements

The famous ‘quantization commutes with reduction’ theorem of Guillemin and Sternberg [GS2]
expresses the commutation of the geometric quantization [So, K] of a classical phase space with
reduction (quotienting out) under a compact group of symmetries. Precisely stated, let (X,ω) be
a compact symplectic manifold and L → X a prequantum line bundle (a complex line bundle with
hermitian connection with curvature 2πiω). Assume that X has been equipped with a positive,
integrable complex polarization of ω. Then, L becomes an ample holomorphic line bundle, and X
a projective Kähler manifold. The holomorphic sections assemble to the Hilbert space Γ(X; L ) of
the geometric quantization.

Let now a compact, connected Lie group G act isometrically on X and L ; the lift defines Hamil-
tonians for the infinitesimal action, captured by a moment map µ : X → g∗. Work of Hesselink,
Kempf-Ness and Kirwan [H, KN, K] equate Mumford’s GIT quotient of X by the complexifica-
tion of G, defined algebraically [MF] as Proj

⊕
n≥0 Γ(X; L n), with the symplectically constructed

Marsden-Weinstein-Meyer reduction X//G := µ−1(0)/G [MW, Mey]. The former is manifestly
algebraic, the latter symplectic, leading, when G acts freely on µ−1(0), to a Kähler structure and
a descended holomorphic line bundle L //G.

(1.1) Dimension 1 results: Quantum mechanics. A restriction map

Γ(X; L )G → Γ(X//G; L //G)

is mediated by µ−1(0); Guillemin and Sternberg show this to be an isomorphisms. The result has
vast generalizations, to almost complex structures [Mei] or to higher cohomology [T1]. Anachro-
nistically, we could call this a B-model statement, as it pertains to holomorphic data, despite the
intermediate appearance of symplectic forms.

The companion A-model result is due to Kirwan [K]. It does not require integrability of the
complex structure, but uses an invariant metric on g. Viewing ‖µ‖2 as a Morse function leads
to a G-stratification of X, with lowest stratum retracting equivariantly to µ−1(0). Kirwan shows
the stratification to be equivariantly perfect for rational cohomology: it defines a filtration on
H∗G(X;Q) with quotients the G-equivariant cohomologies with supports on the strata. The top
quotient H∗G

(
µ−1(0)

)
agrees with H∗(X//G) when the action is locally free.

(1.2) Difference betwen the statements. The second (A-model) conclusion may seem less sharp. The
underlying reason lies in the nature of the two representation theories. The B-model statement per-
tains to linear actions of G on (complexes of) vector spaces in the usual sense (‘B-model actions’).
Kirwan’s statement pertains to topological representations, most easily defined as (derived) local
systems over the classifying space BG. Here, the sections of the local system represents the equiv-
ariant cochains on X. Now, whereas B-model representation theory is semi-simple, the A-model
version is entirely ‘derived’ when G is connected: the cohomology of a space is invariant under
any connected group of automorphisms, and the action is concealed in differentials and extension
classes. Hoping for the (derived) invariants to project, out of H∗(X), the desired part H∗(X//G),
would be far too optimistic; the filtration conclusion is optimal.
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(1.3) Dimension 2 and TQFT. Surprisingly, the stories switch for 2-dimensional quantization. Here,
the B-model representation theory is derived, while the A-model gives an exact answer (admittedly,
subject to strong positivity assumptions). The reason is traced to the rigid (complex holomorphic)
character theory for topological G-actions on linear categories [T3].

Let us first recall the B-model story, with X,L and G be as before. Lurie’s Cobordism Hy-
pothesis [L] ensures that the derived category DbC oh(X) generates a fully local, 2-dimensional
topological quantum field theory (TQFT) for framed manifolds. In this sense, DbC oh(X) replaces
the space of sections Γ(X; L ) of quantum mechanics. Consider the ‖µ‖2-Morse stratification, which
turns out to be algebraic (and agrees with the instability stratification [KN, K]). The analogue
of Kirwan’s filtration, proved by Halpern-Leistner [H-L] and independently (in a slightly different
formulation) by Ballard, Favero and Katzarkov [BFK] is a semi-orthogonal decomposition of the
G-equivariant version of DbC oh(X): one component is DbC oh(X//G), with the other components
associated to the unstable strata. (See loc. cit. for precise statements.)

Turning to the A-model, we abandon the integrability of the polarization, landing in the world
of J-holomorphic structures; but we place the strong restriction that L = det(TX) (in the almost
complex structure), with its natural G-action. Equivalently, ω is in the class of c1(TX) (monotonic-
ity) and the moment map defines an equivariant refinement of that relation: [ω−µ] = c1 ∈ H2

G(X).
We can then define the Fukaya category F (X) over the Laurent polynomial ring in a single vari-
able q of degree 2; in parallel, the quantum multiplication corrects the classical one on cohomology
by polynomial terms in q. The category F (X) is believed to generate a 2D TQFT for oriented
surfaces, reproducing Gromov-Witten theory in dimensions 1 and 2. This leads to the

Conjecture 1. The Lagrangian correspondence µ−1(0) ⊂ X × X//G induces an equivalence of
categories F (X)G ≡ F (X//G).

The methods we use for our main theorem here are expected to affirm this conjecture, but we do
not address it here, for two reasons:

(i) While it is easy to define the topological G-action on the Fukaya category F (X) by Floer
methods, the (homotopy) fixed-point category F (X)G requires some care: an uncompletion
is needed,4 as indicated in [T3, T2, v]. Details of the construction will appear in a paper by
the second author.

(ii) The category F (X) is not known to be smooth and proper in general, nor is its Hochschild
cohomology known to agree with the quantum cohomology QH∗(X); so not many Gromov-
Witten consequences could be immediately extracted5 from Conjecture 1. Rather the opposite:
quantum cohomology controls deformations of F (X) via the closed-to-open map, so conse-
quences for F (X)G may be derived from QH∗G(X).

(1.4) New results. We address instead quantum cohomology directly, proving the following twisted
sector description of the quantum cohomology of X//G. This is analogous to Batyrev’s recipe for
the quantum cohomology of toric Fano varieties, when X is a linear representation of a torus G.
(Our argument may in fact be adapted to that situation.) Cohomology has complex coefficients.

Theorem 1. Let X be compact, symplectic, G-monotone, with Hamiltonian action of the compact
group G, linearized by det(TX).

4Attempts to define it using G-invariant Lagrangians produce incorrect answers.
5For GW theory, one must supplement the category with a splitting of the Hochschild-to-cyclic sequence, a

mysterious ingredient for now. See, however, recent work of Iritani [I] for circle actions, with remarkable application
to the blow-up conjecture.
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(i) The equivariant quantum cohomology QH∗G(X) is an algebra over the equivariant homology
HG
∗ (ΩG) (with its Pontryagin product).

(ii) The Lagrangian correspondence µ−1(0) defines a QH∗G(X)−QH∗(X//G) bimodule [WW, F].

(iii) When G acts freely on µ−1(0), this bimodule induces an algebra isomorphism

QH∗(X//G) ∼= QH∗G(X)⊗HG
∗ (ΩG) H

∗(BG);

the tensor product is strict.

(iv) When the G-action is only locally free, we obtain an additive isomorphism in (iii).

1.5 Remark.

(i) We need the polynomial, not power series version of the cohomology of BG; cf. §2.6 below.

(ii) Calculation of the tensor product can be reduced to the maximal torus and Weyl group of G;
this reproduces the quantum Martin formulas of [GW, Theorem 1.6].

(iii) Under the assumption that QH∗ is the Hochschild cohomology of (a good version of) the
Fukaya category, Part (i) goes back to [T3]. Without that assumption, the twisted sector con-
struction was described in the IAS lecture [T2, iii]. Its analogue for the symplectic cohomology
of a linear G-representation X was predicted in [T4], and recently proved in detail in [GMP].
That example is relevant to the Batyrev formula and its non-abelian generalizations.

(iv) The Lagrangian correspondence in Part (ii) appears in the work of Wehrheim and Woodward
[WW] in the monotone case, and was further studied by Fukaya [F] more generally. Woodward
[W] also defined an A∞ quantum Kirwan map QH∗G → H∗(X//G). We expect the latter to
factor through our isomorphism, but the difference in methods makes this not so obvious.

(v) Assuming good properties of equivariant Floer homology, the correspondence inducing the
isomorphism provides a chain-level lift, with the appropriate algebra and commutation (E2)
structures. All we prove in this paper is the additive statement, and we rely on the correspon-
dence for the rest of the structure.

1.6 Remark (Gauge theory and boundary conditions). The variety SpecHG
∗ (ΩG) is the (fiberwise

group completion of the) classical Toda integrable system. The tensor product in Theorem 1.iii
is the restriction of the algebra QH∗(X//G) to the unit section. The holomorphic Lagrangian
geometry of the Toda group scheme controls boundary conditions for 3-dimensional A-model gauge
theory [T2, T3]. The unit section corresponds to the unit (Neumann) boundary condition, and
its intersection with QH∗C(X) computes the space of states for the gauge-invariant part of the A-
model TQFT; this is expected to be defined by (a good version of) the G-invariant Fukaya catgory
F (X)G, when the latter has good properties (cf. Conjecture 1 and the remarks that follow).

Monotonicity of X and the anti-canonical linearization are essential for Theorem 1. Nonethe-
less, our conclusions survive in part even without those assumptions. This is clearest when X is
monotone, but the G-linearization is shifted, and we still work over the ground ring Q[q±]. When
X itself is not monotone, we must replace that by a Novikov ground ring from the outset (cf. Re-
mark 1.8 below). Most importantly, results for non-monotone X are conditional on a good behavior
of equivariant Floer theory; see for instance [X, Assumption 1]. In both cases, a bulk deformation
class appears in the multiplicative structures [F, DF, X].

Theorem 2. Without the monotone assumption in Theorem 1, we have an exact sequence

0 −→ tHF ∗LG −→ QH∗LG(X) −→ A∗(X//G) −→ 0,

where tHF ∗LG(X) is the ideal of gauged LG-equivariant trapped Floer cohomology (cf. §1.7 below).
After possibly passing to a suitable Novikov ring, A∗ admits a bulk deformation to QH∗(X//G).
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We do not know explicit multiplicative splittings of this sequence, although specific ones are
found in important examples, such as in Iritani’s work on the blow-up formula [I]. The deformation
class from A∗ to QH∗(X//G), which requires passing a Novikov ground ring if we started out
over Q[q±], also seems difficult to compute from geometric data. However, without deformation or
change in ground ring, we have:

Theorem 3. The quotient algebra A∗(X//G) in Theorem 2 can be identified with the LG-equivariant
symplectic cohomology of X with supports on µ−1(0).

Symplectic cohomology with support was introduced by Varolgunes’ [V]. When X is not mono-
tone, defining its the correct LG-equivariant version for this theorem also presupposes a working
equivariant Floer theory. In any case, further discussion of Theorem 3 will await [PT].

(1.7) Trapped cohomology. The presence of a kernel tHF ∗LG has long been known in toric, non-Fano
mirror symmetry formulas; here, we provide the geometric explanation. Part of the complex gets
trapped at critical points under Floer continuation by the Hamiltonian K‖µ‖2, K → ∞. This
entrapment is unsurprising, being intrinsic to Morse theory; more surprising is the ‘clearing’ of
certain critical points by the Floer complex (see the “movie” of §3.1).

The underlying reason is remarkably similar to the ‘geometric quantization commutes with
reduction’ argument [T1]. In that case, G-invariant Dolbeault cohomology with supports on the
unstable strata was ruled out by the action of certain Hilbert-Mumford destabilizing circles. In our
symplectic situation, the shift operators of those circles play a decisive role: in the G-monotone
case, all G-equivariant Floer cohomology is extracted out of the critical points by Floer continuation
under the same subgroups, and the trapped part can be described by shift operators: the downward
shifts that should extract the cohomology into the stable locus keep it in place instead.

Thus, tHF ∗LG carries more structure, being filtered by unstable Morse strata. Trapping are those
strata on which the Hilbert-Mumford destabilizing circle acts with non-positive weights on the fiber
of det(TX). In work going forward, we plan to study this analysis of Floer continuation through
critical points. However, the monotone case allows for a robust simplification of the argument,
which we shall use in this paper.

1.8 Remark (Formality and convergence). The Novikov ring includes power series in a variable v,
raised to the (negative) symplectic areas of curves. The most general setting of Floer theory uses
formal series. If we can work instead with convergent series, the trapped ideal is typically non-zero,
the extreme case being that of empty quotients. However, formal completion may annull it: the
spectrum of the shift operators becomes adically separated in v, according to the chamber structure
of the moment map, which controls their classical degeneration. A choice of reduction chamber will
discard the associated tHF ∗LG(X). This reveals the limitations of working with a formal ground
ring: the quotient A∗(X//G) “jumps inexplicably” when varying the moment reduction parameter,
whereas the gauged theory QH∗LG(X) should vary analytically—as confirmed in numerous mirror
symmetry calculations.

We expect that an additive LG-equivariant Floer complex of X can always be defined over
a convergent version of the Novikov ring, but arguments for that presuppose the use of virtual
fundamental classes. An analogue for the multiplicative structures seems not known.

(1.9) Contents of the paper. In the following sections, we spell out the ingredients and sketch the
proof of Theorems 1 and 2.i. The methods are Floer-theoretic, but our summary here will use,
without comment, equivariant Floer complexes as if the G-action was strict everywhere and the
Hamiltonians K‖µ‖2 were Morse-Bott on the Floer complex. The companion paper [PT] will spell
out the proper workaround, in terms of family Floer complexes and their action filtration. In the
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non-abelian case, the most important changes arise when abandoning G-monotonicity; that will be
discussed in a separate paper.

2. Topological (loop) group actions

We describe the topological origin of the algebraic structures in Theorem 1. The notion of restricted
homotopy fixed points sets the stage for equivariant Floer calculus in the monotone case, avoiding
strict equivariance. On the way, we spell out the argument for Theorem 1.i.

(2.1) Loop group action on the Floer complex. The Floer complex of X is a model for semi-infinite
chains on the free loop space LX. With complex coefficients, we can vary the connection by classes
transgressed from H2(X;C×), the parameter space for small quantum cohomology. The grading
has an additive ambiguity of 2 min〈c1|H2(X)〉, which can be resoved by working over the Laurent
polynomial ring in a variable q of degree 2. Valuing the quantum parameter more broadly in
H2(X;C×) incorporates a varying choice of coefficients: the flat complex line bundles over LX,
which are (E2) multiplicative for the pair-of-pants product. And indeed:

2.2 Remark (Orientation). The Floer complex takes values naturally in the orientation bundle oLX
of LX. As explained in [A], the latter is classified by the trangression to H1(LX;Z/2) of the
Stiefel-Whitney class w2(X). The latter represents the 2-torsion point exp(πic1) in the identity
component of H2(X;C×). As a complex line bundle, oLX is trivial, and its connection can conceal
the twisting contribution to Floer differentials. When w2 6= 0, odd Deck-transformations are
orientation-reversing, which can give rise to unexpected signs in the Floer complex.

An action of G on X should define a topological action of LG on the Floer complex, leading to
the definition of the LG- equivariant quantum cohomology QH∗LG(X), and it does:

2.3 Lemma. Let G be connected.

(i) A topological action of LG on a co-chain complex F is equivalent, up to G-equivariant homo-
topy, to a (derived) local system F̃ over G, with fiber quasi-isomorphic to F , together with
equivariance data for G-conjugation.

(ii) This in turn is equivalent to a G-action on F , plus a G-equivariant action of ΩG on F .

(iii) Equivariance under loop rotations of LG and a matching circle action on F leads to circle-
equivariance in (i) and (ii).

Proof. Part (i) holds because the quotient stack G/AdG is a model for the classifying space of LG,
as can be seen by the former’s presentation as the stack of G-connections on the trivial bundle over
the circle. Part (ii) just spells out semi- direct decomposision LG ∼= Gn ΩG; it is also, of course,
related to (i) via the monodromy representation with base point the unit in G.

Part (iii) is now clear, except perhaps for spelling out the circle action in (ii): it comes from
equating ΩG/AdG = G \ LG/G. The circle actions are the natural ones.

The requisite LG action on the Floer complex of X comes from the local system over G whose
fiber at g ∈ G is the Floer chain complex CF ∗(X; g) of the symplectomorphism defined by g ∈ G.
This is equivariant for conjugation, with the fiber at g carrying the action of the centralizer Z(g).
The local system structure—or, equivalently, the acion of ΩG—comes form interpreting paths in
G as Hamiltonian isotopies.

2.4 Lemma. The equivariant homology of G with F̃ coefficients is given by the (left derived) tensor
product

C G
∗ (F )⊗LC G

∗ (ΩG) C
G
∗
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Proof. We just identify homology over G with co-invariants of monodromy, fiberwise over BG.

2.5 Remark. The Floer complex has a natural E2-multiplicative structure form the pair of pants
product. This is compatible with the Pontryagin product on G, and replicated on HG

∗ (G; C̃F ∗) by
considering the moduli of flat bundles on the pants with boundary monodromies g, h, gh. The tensor
product in Lemma 2.7 above involves two E2 algebras over a central E3-algebra, and the algebraic
and geometric E2 structures match. Following an insight of Kontsevich and Costello, the circle
action by loop rotation on the Floer complex of a compact symplectic manifold is trivialized by an
extension of Gromov-Witten operations to the boundary of the genus-zero moduli space Mn

0 ; this
also trivializes the bracket part of the E2 structure. We do not know a reference for the equivariant
version; it does follow by fibering X over BG—in effect, from the exisence of G-equivariant Gromov-
Witten theory.

(2.6) Restricted homotopy fixed points. The homotopy G-invariant part of a G-complex F , or of
the F -valued chains in G as in Lemma 2.3, is its derived space of sections over BG. It is a module
over C∗(BG), and its cohomology is complete at the maximal ideal. We will need the polynomial
version instead (sometimes, misleadingly, called the equivariant homology HG

∗ ). The distinction is
meaningful, because of the a priori grading collapse in the Floer complex.

A general RΓ(BG;F ) need not have preferred uncompletions: but this will be the case if F is
cohomologically bounded below. Intuitively, this is obvious: only a finite-dimensional part of BG
contributes to H∗(BG;F ) in a fixed degree, and the graded direct sum is the prefered uncompletion.
More precisely, we present such an F as a colimit of the Postnikov fibers, subcomplexes τ≤nF ,
vanishing above degree n and agreeing with F below; these are defined up to quasi-isomorphism
over BG, and are finite BG-extensions of local systems.

2.7 Definition. If F is cohomologically bounded below, the restricted homotopy invariant complex
is the colimit of the RΓ(BG; τ≤nF ). For a colimit of bounded-below complexes, the homotopy
invariant complex is the corresponding colimit.

2.8 Remark. The colimit presentation is needed as part of the data. In geometric situations, a
preferred one is available: from a strict G-action on a space S (even infinite-dimensional), we choose
a G-CW -structure, uniquely up to G-homotopy equivalence (the equivariant CW approximation
theorem). The colimit of the homotopy fixed-point sets of the (chains on the) finite-dimensional
skeleta then defines a restricted fixed-point set for chains on S.

(2.9) Filtrations. Floer cohomology involves the addition of a grading variable q of degree 2, and
completion with respect to a Novikov parameter v representing the exponentiated area of curves. In
the monotone case, v is not needed, and the Floer complex is defined over the Laurent polynomial
ring C[q±].

3. Summary of the proofs of Theorems 1 and 2

The ideal proof would present X as a principal LG-bundle over X//G. While there is no such
geometric fibration, the Floer complex ΦX of X, built from periodic orbits of the Hamiltonian
H := 1

2K‖µ‖
2, will provide a substitute. Specifically, its K →∞ limit will land in a neighborhood

N ⊃ µ−1(0), identified symplectomorphically with the T ∗G-disk bundle over X//G by the normal
form theorem [GS1]. The desired fiber LG will materialize homologically (in an associated graded
complex) as the string topology, sor symplectic cohomology, of T ∗G. (In the case of orbifold
quotients, the complex will fiber instead over the inertia stack I(X//G) see [CR] for its definition.)

9



(3.1) Movie: Floer continuation. Before proceeding with the outline, we give the heuristics. Let
us ‘turn on’ H = 1

2K‖µ‖
2 and increase K. Floer continuation under growing K flows the periodic

Hamiltonian orbits downward along the gradient. In an unstable ‖µ‖2-Morse stratum, orbits flow
initially to the critical set, accruing (co)homology there. In the G-monotone case, all cohomology
then exits again (in a broken flow) along the downward gradient, eventually escaping into the
stable Morse stratum Xs. This exit is enabled by the positive weights on the canoncial bundle
of the Hilbert-Mumford destabilizing circles. Once in Xs, the orbits are drawn into the normal
neighborhood N ⊃ µ−1(0), and our earlier description of ΦX takes over.

This movie is only a guide: continuation need not define continuous maps between orbit spaces.
Our argument relies instead on a topological estimate for the monotone index. For non-abelian
G, will require the stronger assumption of G-monotonicity of X (0.3). The movie becomes more
relevant away from the G-monotone case, when some cohomology remains trapped at critical loci.

(3.2) Executive summary: derived additive statement. We will define a filtration of ΦX compatible
with powers of the grading variable q. Once in N , the associated graded complex will fiber over
X//G, with fiber SH∗(T ∗G), a degree-shifted copy of H∗(LG). On the G-equivariant complex,
the induced spectral sequence will be shown to collapse at E1. In the free case, this can be seen
(with rational coefficients) from Kirwan’ surjectivity statement on classical cohomology. On the
LG-equivariant complex, an isomorphism with the base can be seen integrally, by invoking the
section of constant orbits µ−1(0)/G.

Locally free actions need an additional check, as we must identify QH∗LG(X) (additively) with
the cohomology of the inertia stack I(X//G). The twisted sectors of the latter do not come from
µ−1(0)/G; but neither, for that matter, do the twisted components of ΦX , consisting of Hamiltonian
orbits covered by fractional circles in G. The replacement for the constant section, exhibiting our
additive isomorphism, come instead from g-twisted Floer complexes of X, with group elements g
that occur as stabilizers in µ−1(0). Quasi-isomorphy (now with Q coefficients) can be deduced from
classical K-theoretic Kirwan surjectivity [HL].

3.3 Remark (Important fine print). We do not filter ΦX by q-shifts of the classical latticeH∗G(X)[q] ⊂
H∗G(X)[q, q−1]; rather, we will use the normalized Floer degrees of orbits in §3.6 below.

(3.4) Multiplication. In the case of free quotients, we see the ring structure from the Lagrangian
correspondence µ−1(0) ⊂ X ×X//G investigated by Wehrheim and Woodward [WW], and equiv-
ariantly by Fukaya et al. [F, DF, X]. To see its compatibility with our additive isomorphism, we
include the correspondence equivariantly in the fibration over the group manifold G and deform
it by 1

2K‖µ‖
2. The G-equivariant Floer self-homology of the Lagrangian is identified with that

of X//G. As it is also identified with the LG-equivariant Floer homology of X, the bimodule it
induces for the two sides defines the same quasi-isomorphism as the constant section.

In the orbifold case, we relate an inertia stack sector twisted by g ∈ G with an analogous
correspondence placed over the twisting group elements of G: µ−1(0) is replaced by the moment
pre-image of the smallest g-fractional orbits. In this case, however, the correspondence is known to
involve a deformation between the two sides.

(3.5) Formality. Strictness of the tensor product (0.2) requires a closer look at our q-filtration. The
G-equivariant complex ΦG

X computes QH∗G(X), and higher Tor groups are ruled out by noting that

(i) QH∗G(X) is a Cohen-Macaulay module over HG
∗ (G),

(ii) SpecQH∗G(X) ∩ SpecH∗(BG) is a 0-dimensional subscheme of SpecHG
∗ (ΩG).

Claim (i) follows becaseQH∗G(X) is finite and free, under projection to the submanifold SpecH∗(BG).
For the second claim, consider the fibration of ΦG

X over the base I(X//G): its filtration spectral
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sequence collapses at E1 to H∗ (I(X//G);H∗(ΩG)), with the constant section giving the obvious
copy of the base therein. This ΩG-fibration, associated to the adjoint action of G, is compatible
with the HG

∗ (ΩG)-action. Universally, over BG, the respective Leray spectral sequence collapses
rationally, so that the cohomology over X//G can also be split, and the E1 term can be built from
finitely many copies of H∗(ΩG) over the base I(X//G). This makes the intersection with H∗(BG)
in HG

∗ (ΩG) zero-dimensional, as claimed.

(3.6) Floer ingredients. To spell out the details in execution, we recall some ingrediets of a Hamil-
tonian Floer complex with Morse-Bott critial loci:

(a) The Floer cohomology grading deg on an isolated periodic orbit is valued in the Z-torsor of
trivalizations of det⊗2(TX) along the parametrizing circle; q shifts trivializations.

(b) On a space of orbits, the ordinary degree of (equivariant) cohomology classes is adjusted by
(twice) the Conley-Zehnder shift, the (floor of the) winding number of the Hamiltonian flow
on det (relative to a chosen trivialization).

(c) Framing TX by the action of the covering circle in G normalizes this shift and gives each
orbit a normalized Floer degree ndeg.6 In the the stable locus, and orbit with velocity vector
a dominant ξ ∈ t has

ndeg(ξ) = −〈4ρ|ξ〉+ C

This is also the Floer degree in the symplectic cohomology SH∗(T ∗G), and the (negative)
dimension of the Morse cell in ΩG attached to the closed geodesic ξ.

Integrally covered orbits in the unstable locus can be perturbed into the stable locus, when
the latter is non-empty; so the formula extends to those as well. In the G-monotone case, the
stable locus cannot be empty.

(d) The action A of a loop is the sum of the integral of H and a real lift of the holonomy of L .
It is valued in the torsor of topological trivializations of L along the loop.

(e) For a Floer orbit Ox, the action is a real lift of the return isomorphism for the Hamiltonian.
The covering circle in G can be used to (fractionallly) trivialize L , leading to the formula

A (Ox) = H(x)− 〈µ(x)|Kµ(x)〉 = −K
2
‖µ‖2(x)

having accounted for the velocity of the Hamiltonian flow dH = 〈Kµ|dµ〉. For a more general
Hamiltonian defined by a G-invariant function F (µ),

A = F (µ)− 〈dF |µ〉.

(f) When the symplectic class agrees with c1, the following monotone index of a Floer orbit is
defined without additional choices, since the two terms are valued in the same torsor:

mix = Floer degree− 2A .

(g) From (c)–(f) above we get the formulas

mix = ndeg +K‖µ(x)‖2 when H =
1

2
K‖µ‖2,

mix = ndeg + 2 (〈dF |µ〉 − F (µ)) in general.
6There is some ambiguity for fractionally covered orbits; but those fall into finitely many equivalence classes,

wherein degrees can be integrally reconciled. This ambiguity accounts for the bounded constant C in the formula.
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3.7 Theorem. (i) When X is G-monotone, all of CF ∗G(X) eventually reaches the normal neigh-
borhood N , as K →∞.

(ii) For free actions, the section of constant orbits in the LG-equivariant Floer complex induces a
quasi-isomoprhism with the Floer complex of the base X//G.

(iii) For locally free actions, the twisted sectors of I(X//G) define quasi-isomorphic sections of the
fractional sectors of CF ∗LG(X).

(iv) Modulo positive q-powers with respect to normalized Floer degree (c), the limiting Floer complex
agrees with the cohomology complex of X//G with coefficients SH∗(T ∗G) = HdimG−∗(LG).

(v) In the presentation (iv), the monodromy LG-action (§2) is the natural LG-action on SH∗.

3.8 Remark. Statements (ii) and (iii) imply the collapse of the q-filtration and Leray spectral
sequence, and the strictness of the tensor product presentation.

Proof of 3.7.i. The action increases under continuation, so mix decreases. For a torus, ndeg = 0,
and cohomology classes on orbit spaces only increase degree; the first formula in (3.6.g) then implies
that µ→ 0 as K →∞, so the orbits continue into N (and an effective bound can be specified).

For the non-Abelian case, define F (µ) := K
2 ming∈G ‖g.µ−2ρ‖2, in terms of the squared distance

to the co-adjoint orbit of 2ρ. We use the second formula in (3.6.g), having assumed that µ lands
in the dominant Weyl chamber, to get (leaving out the ambiguity C)

mix = −4K〈ρ|µ− 2ρ〉+ 2K〈µ− 2ρ|µ〉 −K‖µ− 2ρ‖2 = K‖µ− 2ρ‖2.

This seemingly forces all orbits to flow to the orbit of 2ρ. However, we left out the smoothing of F
on the singular co-adjoint orbits, which keeps those orbits flowing instead, along their walls in the
Weyl chamber, to the projections of 2ρ. Under the G-monotone assumption, all limiting orbits may
be included in the normal neighnorhood N and the argument proceeds as before.

Outline proof of 3.7.ii, iii. The g-twisted forms, g ∈ G, of ΦX as K →∞ are fibered equivariantly
over the group manifold G. Over each g ∈ G, the space of orbits comprises the geodesics in G from
p to pg, as p ranges in G, embedded in the fibers T ∗G of the normal neighborhood N .

Over all of G, the total space of Floer orbits is the space G×g of complete geodesics. Quotienting
by G leaves the space I(X//G)×g. The section at the constant orbits is compatible with the (zero)
Floer differential: a non-zero differential would violate Kirwan surjectivity.

Contractibility of g secures the desired quasi-isomorphism in the Abelian case. When g is
non-abelian, this argument is incomplete: the normalized degree ndeg jumps over g, as geodesics
acquire conjugate points, so that the Morse flow cannot retract the space to the critical locus. The
workaround is to observe that contractibility allows us to (homologically) retract the critical space
g to the region of normalized degree zero without changing the homology of the total complex,
whereupon the entire complex retracts there.

3.9 Remark. A swindle in this beautiful argument was to invoke a well-defined geometric complex
for K = ∞. The work-around, to be explained in Part II of the paper, performs a K-dependent
action truncation of ΦX , with the effect of selecting the part contained in N ; the limiting Floer
complex is the K →∞ colimit of the truncations.

Proof of 3.7.iv. The a priori energy estimate shows that a Floer differential which is not of topolog-
ical origin increases the action strictly. The constant orbits within µ−1(0) have the maximal action
0 with respect to the normalization of §3.6.e above, so Floer differentials originating there must
land in positively q-shifted orbits. The same then applies to their transforms under shift operators
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from 1-parameter subgroups of G. When the action of G is free, that settles all the orbits. In the
locally free case, we apply the same argument to the orbits of maximal action within the fractional
equivalence class and their shifts.

Proof of 3.7.v. Tautological from the definitions of the LG-actions.

Sketch of proof of Theorem 2.i. On Floer orbits that do not approach µ−1(0), the action necessarily
goes to ∞ with K, under continuation. The a priori energy estimate shows them to form a
subcomplex and an ideal for the Floer product. Quotienting out by that ideal leaves a quotient
complex, to which our earlier analysis carries over. The short exact sequence of complexes leads to
a long exact sequence

. . . −→ tHF ∗LG
ι∗−→ QH∗LG(X)

q∗−→ A∗(X//G) −→ . . .

Its splitting into short exact sequences follows by ruling out equivariant differentials originating
near µ−1(0) and leading to trapped orbits.

On µ−1(0), the (constant) orbits are already present in the small K Floer complex (the Morse
complex for ‖µ‖2), so no differentials originate there (for Q-cohomology). The action of shift
operators of HG

∗ (ΩG) settles all orbits. A twisted component of the inertia stack I(X//G) is
similarly covered by fractional orbits, and is matched under the twisted Lagrangian correspondence
(Remark 3.4). The correspondence determines classes in QH∗LG(X), showing the lifting of all classes
from the twisted sector and (in light of Theorem 3.7.iii) the vanishing of differentials.

The proof of Theorem 2.ii, the agreement of the quotient A∗ with the LG-equivariant symplectic
cohomology of X with supports on µ−1(0), is postponed to Part II of the paper.

3.10 Remark. In the general case, our strictness argument for the tensor product

QH∗LG
∼= QH∗G ⊗LHG

∗ (ΩG) H
∗(BG)

only applies to the G-equivariant cohomology of the quotient Floer complex modulo trapped classes.
It is conceivable that some branches of QH∗G(X) meet the section SpecH∗(BG) ⊂ SpecHG

∗ (ΩG)
in a positive dimension, leading to Tor groups in the tensor product. Notably, this is the case for
trivial G-actions.

Daniel Pomerleano, U Mass. Boston, daniel.pomerleano@umb.edu
Constantin Teleman, UC Berkeley, teleman@berkeley.edu
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