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Here we follow the discussion in Gukov and Witten [1]. We’re going to use the A-model machinery we

developed previously in an example, where we can get the representation theory of SU(2) and SL(2,R) from

quantization of our manifold. We’ll start with a review of the A-model, and some remarks about its features

that will be useful later, then introduce the example and choose different branes and parameters, which will

give us the representation theory we want.

1 Review of the A-model

The A-model [2] is obtained by a twist of the N = (2, 2) (1 + 1)-d σ-model. Here we will just consider the

usual target for the A-model, i.e. some Kähler manifold Y . The σ-model has bosonic and fermionic fields:

the bosonic fields are given by maps φ : Σ → Y , where Σ is the worldsheet, and there are four fermionic

fields ψ±, ψ̄±, and there are four supercharges Q±, Q̄±. There are also two U(1) symmetries of the action,

and we denote these by U(1)V ,U(1)A

The sigma model depends on the Riemannian metric on Y , but turns out in this setting we can twist the

theory so that it becomes independent of that metric. There are two inequivalent twists, the A-twist and

the B-twist which we get by using the U(1)V or the U(1)A symmetry. In our case we’re mostly concerned

about the A-twist, but we will see that in the case where Y has a hyperkähler structure, it becomes useful

to consider both models, since we can regard the A-twist in symplectic structure ωJ as a B-twist in complex

structure K.

Most important to us is to describe the boundary conditions that we will allow for the A-model. Let’s

take Y to have a holomorphic symplectic structure Ω = ωJ + iωK and a complex structure I. We first pick

a B-field, that is a class is H2(Y,C). We will need two kinds of boundary conditions:

• Lagrangian branes B′, supported on Lagrangian submanifold of middle dimension (for ωK). These

carry a flat unitary Chan-Paton bundle L′

• The coisotropic brane Bcc, supported on all of Y and with a unitary Chan-Paton bundle L of curvature

F satisfying (ω−1K (F +B))2 = −1, which in the hyperkähler case satisfies F = ωJ

2 Spaces of strings

Given any A-branes B1,B2,B3 we have:

• A space of strings Hom(B1,B2). This is given by quantizing the theory on a strip.
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• A pairing Hom(B1,B2)⊗Hom(B2,B1)→ C, given by the twice punctured disk

• A composition law Hom(B1,B2)⊗Hom(B2,B3)→ Hom(B1,B3), given by the disk with three punctures

• An isomorphism between Hom(B,B) and the space of local operators that can be inserted in the brane

B

For details look at Kapustin-Witten section 11 [3].

Given the coisotropic brane Bcc and some Lagrangian brane B′, we will look at the following spaces of

strings:

• Hom(Bcc,Bcc), which (in degree zero) is given by holomorphic functions on Y . This follows from

the analysis of which local operators can be inserted on the coisotropic brane while preserving QA

supersymmetry. In general, this is a function on Y , and on such functions the susy charge QA is given

by ∂̄ in complex structure I

• Hom(Bcc,B′), which we want to be the space of quantum states. Calculating this space should be the

same as doing geometric quantization with prequantum line bundle N = L ⊗ L′−1. This is hard to

calclate in general, but in the hyperkähler case this space admits a more explicit description, and as a

vector space is given by H∗(M,
√
K ⊗ N ). The Hilbert space structure doesn’t come naturally from

this and we need extra ingredients to describe it

3 The algebra of observables

Consider the following complexification of the 2-sphere, isomorphic to T ∗S2

Y = {x2 + y2 + z2 = µ2/4} ⊂ C3

where µ is some complex constant. This is a hyperkähler manifold with the Eguchi-Hansen metric, and we

can give it a holomorphic symplectic form Ω = ωJ + iωK = dy∧dz
x . The manifold Y has an action of SO(3,C)

and Ω is invariant under this action. Note also that if we identify SO(3,C) ' C3 and then Y is a regular

coadjoint orbit.

Now let’s look at the space of parameters for the A-model with this target. The Chan-Paton bundle L
is determined by three periods around the cycle represented by the real sphere (the only nontrivial 2-cycle)

α =

∫
S2

ωI/2π, β =

∫
S2

ωJ/2π, γ =

∫
S2

ωK/2π,

These are related to the parameter µ = ±(β + iγ). The only other thing we have to determine is the class

of the B-field, which is determined by η =
∫
S2 B/2π. Not every choice leads to an A-brane: we need to give

a Chan-Paton line bundle L with curvature F such that ω−1K (F + B) squares to −1, which in the HK case

implies F +B = ωJ . The isomorphism class of L is determined by an integer n =
∫
S2 F/2π =

∫
S2 c1(L), so

we need to impose a the constraint β − η = n ∈ Z
The choice of (α, β, γ, η) up to orientation reversal determines the coisotropic brane, which means it also

determines our algebra of observables. This is an important point: our algebra of observables (and therefore

in our case the value of the Casimir element) only depend on our choice of coisotropic brane, since it is given

by Hom(Bcc,Bcc)
Classically, this ring is given by holomorphic functions on the support of the coisotropic brane Y in

complex structure I. When we quantize we will get:
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• A space of states H given by holomorphic functions on Y

• An algebra of operators A acting on H. These operators are generated by Jx, Jy, Jz, which correspond

to the observables x, y, z

In the quantized theory the algebra structure is different. It’s a general result (Kapustin-Witten) that

the product gets deformed by the Poisson bracket corresponding to the holomorphic symplectic form Ω.

So [Jx, Jy] = {x, y} = z. The classical algebra also has another relation x2 + y2 + z2 = µ2/4. This also

corresponds to a relation between operators, which turns out is J2
x + J2

y + J2
z = (µ2 − 1)/4. That is, we

get A = U/I i.e. the universal enveloping algebra U(sl(2,C)), mod the ideal I generated by the relation

J2 = (µ2 − 1)/4, where J2 = J2
x + J2

y + J2
z is the Casimir.

So, for whatever other brane B we pick, we’ll have an A-module Hom(Bcc,B). Depending on which

A-brane B that we pick, we’re gonna get different A-modules but the value of the Casimir will be the same.

For example, if we pick the same brane Bcc we get again A with the algebra action on itself, i.e. an infinite

dimensional sl(2,C) representation. This doesn’t necessarily mean that we’ll get a group representation,

since we’re dealing with non-compact groups. However, note now that in the case where we pick Bcc itself,

we do have an honest G = SO(3,C) representation: Y is G-invariant, so G acts on the functions generated

x, y, z in the fundamental representation. This action extends to the quantized algebra, and G acts on A.

Differentiating this action, we get a g action on A and we can check this action agrees with the action on A
on itself.

So, if we can find another brane B′ that is also G-invariant, we hope that the action of g on Hom(Bcc,B′)
will exponentiate to an honest G-action. We don’t need this, though: if we find some brane invariant under

a subgroup H of G, we can at first restrict the action to h ⊂ g and then we hope that this will exponentiate

to an action of H. In the next example, we’re gonna look at the cases where H = SU(2),SL(2,C), and for

that we will pick appropriate branes.

4 Hermitian structure/Unitarity

Now we want a way to assign a Hermitian structure to Hom(Bcc,B′), and to check when the representation

of H is unitary. First let’s remember we already have a pairing between Hom(B1,B2) and Hom(B2,B1),

which is non-degenerate. So using this we can make a Hermitian product if we have a complex antilinear

map Hom(Bcc,B′)→ Hom(B′,Bcc) Turns out it is possible to construct such a map if:

• We have an involution τ of Y that reverses the symplectic form τ∗ωK = −ωK

• Bcc has to be τ -invariant. It’s supported on all of Y , so we just need to check if its Chan-Paton bundle

is τ -invariant, which happens if τ∗ωJ = ωJ , i.e. τ∗Ω = Ω̄

• B′ has to be τ -invariant. The easy way to do this is if its support M ⊂ Y is fixed pointwise by τ .

In that case, we get a positive-definite Hermitian product, and he representation we get is unitary.

Another way to do this is if M is just τ -invariant, but then we need to pick an action on the Chan-Paton

bundle, which involves a choice. In these cases, the representations can be unitary or not.
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5 SU(2) representations

We’ll work out an easy case first, then later get our hands dirty with picking other lagrangians. Pick µ2 > 0

real (which corresponds to γ = 0, β 6= 0) and no B-field, so η = 0 In coordinates (x, y, z), consider the

involution τ of Y given by complex conjugation. The fixed point set of this is M = S2 which represents

the nontrivial 2-cycle of Y . This is Lagrangian for the symplectic structure ωK , so we can put a B′ there.

There’s also have an integrality restriction on µ, so that the coisotropic brane makes sense:

µ = β = n =

∫
M

c1(L)

This is invariant under the action of SO(3) ⊂ SO(3,C), so we’d expect to get representations of SO(3). As is

usual in QM, since we only care about projective representations, we get a little more: reps of the universal

cover SU(2)

By our previous argument using the HK structure, this is the same as picking a prequantum line bundle

N = L ⊗ L′−1 = L (notice that the bundle L′ is flat and thus trivial on S1). So we have

Hom(Bcc,B′) = H∗(M,
√
K ⊗ L) = H∗(P1,O(n− 1))

This sheaf has no higher cohomology so the total dimension is dimH0(P1,O(n − 1)) =
(
n
1

)
= n. We can

easily guess which representation we have: it has highest weight (n− 1)/2 and as we expected the Casimir

acts as (n2 − 1)/4. These exhaust already all the reps of SU(2).
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