
Solutions 9

Question 1
Fifth order pole at z = i, so we need the value at z = i of

1

4!

d4

dz4
eiz

(z + i)5
=

eiz

24(z + i)5

(
1 +

20i

z + i
− 180

(z + i)2
− 840i

(z + i)3
+

1680

(z + i)4

)
=

133

384i · e
The standard infinite upper half-circle gives∫ ∞

0

cosxdx

(x2 + 1)5
=

133

192

π

e
.

Question 2
sin2 x = 1

2(1− cos 2x). By the usual upper half-circle method and using the half-residue at zero,∫ ∞
0

sin2 x

x2
dx =

1

4

∫ ∞
−∞

1− cos 2x

x2
dx = Re

(
PV

∫ ∞
−∞

1− e2ix

4x2
dx

)
= Re

(
πi · Resz=0

1− e2iz

4z2

)
= πi

−i
2

=
π

2
.

Question 3 Pretty straightforward following the instructions: the desired integral is half of∫∞
−∞, and we can replace for simplicity cos(px) with epix: the sine integral vanishes because it is

odd. The vertical contributions in the rectangle vanish in the R → ∞ limit, because eipz stays
bounded, while | cosh z| → ∞. The upper integral is eipπ times the original (mind that cosh
changes sign when adding πi, which takes care of the reversed orientation on the upper side),
so all in all we get the desired formula from

(1 + eipπ)

∫ ∞
0

cos px

coshx
dx = πi · Resz=πi/2

eipz

cosh z
= πi

eipπ/2

sinh(πi/2)
= πeipπ/2

Question 4
By parity, we need to compute

∫∞
−∞ and we use the contour of Q3, but of height i. The upper

horizontal side carries a simple pole at z = i so we need to use Cauchy Principal Value on that
side,

PV

∫ ∞
−∞

z + i

sinhπz
dz = PV

∫ ∞
−∞

z

sinhπz
dz =

∫ ∞
−∞

z

sinhπz
dz,

the first equality because sinhπz is odd (the second because there is no pole left). So the
half-residue formula gives

PV

∮
= 2

∫ ∞
−∞

xdx

sinhπx
= πi · Resz=i

z

sinhπz
= πi · i

−π
= 1,

whence we get 1/4 for the original integral.

Question 5
Convert to a complex integral around the unit circle z = eiθ with dz = ieiθdθ and 2i sin θ =
z + z−1: ∫ 2π

0

dθ

5 + 4 sin θ
=

∫
C

−iz−1

5− 2iz + 2iz−1
dz =

∫
C

dz

2z2 + 5iz − 2
.

The denominator vanishes at z = −5i/4 ± 3i/4 of which −i/2 is inside the unit circle. The
residue there is the value at −i/2 of

z + i/2

2z2 + 5iz − 2
=

1

2z + 4i

which is 1/3i, so the integral is 2π/3.
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Question 6
Use a keyhole contour, making a cut along the positive real axis so that zα = xα on the upper
side and zα = exp(2πiα)xα on the lower side. The two integrals along the positive real axis add
up to

(1− exp(2πiα))

∫ ∞
0

xα dx

(x2 + 1)2
= −2i exp(πiα) sin(πα)

∫ ∞
0

xα dx

(x2 + 1)2
.

On the circle of small radius r, the integral is bounded by 2πr · rα/(1− r2)2 which clearly goes
to 0 with r when α > −1. On a large circle, we have a bound 2πR · Rα/(R2 − 1)2 which again
goes to 0 with R → ∞ as long as α < 3. So in the limit the only contributions come from the
real line as detailed above.
The singularities are at z = ±i; they are double poles. The residues are

d

dz

zα

(z + i)2

∣∣∣∣
z=i

=
αiα−1

(2i)2
− iα

(2i)3
=

(α− 1)ieπiα/2

4
,

and
d

dz

zα

(z − i)2

∣∣∣∣
z=−i

=
α(−i)α−1

(−2i)2
− (−i)α

(−2i)3
= −(α− 1)ie3πiα/2

4
,

summing to

i(α− 1)

4
exp(πiα) (−2i sin(πα/2)) =

(α− 1)

2
exp(πiα) sin(πα/2).

The residue formula gives

−2i exp(πiα) sin(πα)

∫ ∞
0

xα dx

(x2 + 1)2
= πi(α− 1) exp(πiα) sin(πα/2),

cos(πα/2)

∫ ∞
0

xα dx

(x2 + 1)2
=
π(1− α)

4
sin(πα/2).

Remark: If you exploit the symmetry x↔ (−x) of the denominator, you can integrate instead
on an upper half circle, and get a way with a single residue calculation at z = +i. But the more
residues, the merrier!

Question 7

We integrate
z log z dz

z3 + z2 + z + 1
on the keyhole contour, using a tiny circle of radius r about 0 and

a large outside circle of radius R. The large circle integral is bounded by C · 2πR · (R logR)/R3

for some constant C < 1, as soon as R is large, so it goes to 0 as R → ∞. The small circle
integral is bounded by c · r2 log r for some constant c, and it similarly goes to 1 as r → 0. The
two integrals on the real axis combine to

−(2πi)

∫ ∞
0

xdx

x3 + x2 + x+ 1

because the upper value of the denominator is x log x and the lower one is x(log x+2πi). So by the

residue formula, our integral is the negative of the sum of the three residues of
z log z

z3 + z2 + z + 1
at the points z +±i and z = −1. These are:

− π

2 · 2i(i+ 1)
, −πi

2
,

3π

2 · (−2i)(−i+ 1)

so the integral is π/4.
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Question 8
We can get a more precise result. Take f(z) = (z − 1)nez, g(z) = −a and consider the circle
of radius 1 centered at 1, where |f | ≥ 1 but |g| < 1. So f and f + g have the same number of
roots in that disk, with multiplicities counted, and than number for f is clearly n. Now f + g
cannot have multiple roots: vanishing of its derivative requires n(z − 1)n−1ez + (z − 1)nez = 0,
or (z− 1)n−1(z+ n− 1) = 0. Now z = 1 is not a root of (z− 1)nez = a for a 6= 0, and z = 1− n
is not inside the disk so is also not a root.

Question 9
Choosing the function to be real-valued on the upper edge of the keyhole contour, it gets mul-
tiplied by e−2πip on the lower edge and we get from the half-residue formula

(1− e−2πip)PV

∫ ∞
0

x−pdx

x− 1
= πi · (Res1+ + Res1−)

z−p

z − 1

where the ± superscripts indicate we consider the upper, rest. the lower branch of the function.
The residues are 1 and e−2πip, so we get

PV

∫ ∞
0

x−pdx

x− 1
= πi

1 + e−2πip

1− e−2πip
= π cot(πp)

Question 10
The function can be made single-valued in the region enclosed by the contour indicated (the effect
of the straight lines and tiny circles equals that of a branch cut). We choose the holomorphic
function which is real-valued on the upper side of the interval [0, 1]; its value on the lower side
is multiplied by exp(4πi/3). Cauchy’s theorem gives

(1− e4πi/3)
∫ 1

0

dx
3
√
x2 − x3

=

∮
CR

dz
3
√
z2 − z3

= e−πi/3
∮
CR

dz
3
√
z3 − z2

= e−πi/3
∮
CR

dz

z 3
√

1− 1/z

having used the cube root which is real on the (large) positive real axis. (The factor exp(−πi/3)
arises by tracing the moving from 1− ε to 1 + ε on a tiny circle in the upper half plane.)
As R→∞, the last integral converges to 1πi and we get as the answer

2πi · e−πi/3

1− e4πi/3
=

2π√
3
.
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