
Solutions 8

Question 1 Because of the high power in the denominator, this requires Cauchy’s formula for
derivatives, specifically the second derivative of eiz at z = 0. The answer is 2πi/2!(−1) = −πi.

Question 2
There are two singularities inside the circle, at z = ±i each of which we can isolate with a little
circle. The factorization (z2 + 1)2 = (z + i)2(z − i)2 tells us that we will need again to use
Cauchy’s formula for derivatives, the first derivative in this case. The singularities contributes
the value of the derivative of the derivative of ezt/(z ± i)2 at z = ±i. The contributions are
i
4(it∓ 1)e±it, and summing them gives (sin t− t cos t)/2.

Question 3
Cauchy’s formula for derivatives, or the residue formula for z = −1, gives

1

2!

d2

dz2
(zetz)

∣∣
z=−1 =

1

2

(
2tetz + t2zetz

)∣∣
z=−1 = te−t − t2

2
e−t

Question 4
We proved in class the existence of Laurent series expansion for an annulus, by expanding the two
Cauchy integrals into geometric series: if a function f is holomorphic in an annulus r < |z| < R,
the outer circle integral becomes a Taylor series convergent for |z| < R and the inner circle
integral becomes a Laurent principal part convergent for |z| > r. (See also Sarason, VIII.6.)
Thus, the negative part outside the disk |z| < r; but for an isolated singularity, we can take r
arbitrarily small so it converges on C \ {0}.

Question 5
We have sin(z + z−1) = sin z cos z−1 + sin z−1 cos z and get for each term the product of series
expansions
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The z−1 coefficient in the two series are
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and so the residue is given by the (very rapidly convergent) series
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Question 6

(z2 − 1) sin(1/z2) = (z2 − 1)

∞∑
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=

∞∑
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=

∞∑
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where f2k = −(−1)k/2/(k + 1)! if k is even and f2k = (−1)(k−1)/2/k! if k is odd.
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Question 7
First annulus: 0 < |z| < 1, we expand (1− z) in the denominator in a geometric series to get

f(z) =
∑
n≥0

zn−2.

Second annulus, 1 < |z| <∞, we have

1

z2(1− z)
=

−1
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= −

∑
n≥0

z−n−3

This “converges” also at z =∞ (and we get the value 0).

Question 8
Partial fractions is the easiest way here, z

(z−1)(2−z) = 1
z−1 −

2
z−2 , followed by the relevant geo-

metric series expansions.
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(d) Set z − 1 = w and expand
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(e) Set w = z − 2 and expand
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Question 9
(a) Simple poles at qth roots of unity exp(2πik/q), residues − exp(2πik(p+ 1))/q.
(b) Double poles at z = ±1, residues 1 at both.
(c) Simple poles at z = exp(±2πi/3), residues

cos(exp(±2πi/3))

2 exp(±2πi/3) + 1
= ∓icos(exp(±2πi/3))√

3
.

Question 10
As in the hint, consider the square SN with vertices at the four points (N+1/2)(±1±i), with the
four choices of sign. Now | cos(x+ iy)|2 = cos2 x+sinh2 y and | sin(x+ iy)|2 = sin2 x+sinh2 y, so
on the vertical sides, | cot(πz)| < 1 while on the horizontal ones, | cot(πz)| < 1+1/ sinh2(N+1/2)
which is bounded by 2 for N ≥ 1. So |f(z) cot(πz)| < (const.)/N2 on SN for large N , and∫

SN

f(z) cot(πz)dz → 0 as N →∞.

For N large enough to enclose all poles of f , the sum of the residues inside SN is the contour
integral.
The singularities come from those of f and those of cot(πz) — the integers. If f does not have a
pole at the integer n, then f(z) cot(πz) has a simple pole, and from Taylor expansion of sin, cos
we see that

f(z) cot(πz) =
f(z)

π(z − n)
+ (holomorphic)
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and so the residue of f(z) cot(πz) at z = n is f(n)/π. On the other hand, at any pole p of f
(integer of not) we get the residue Resp [f(z) cot(πz)]. Setting the sum of the residues to zero
shows that  N∑

−N
f(n) + π

∑
p∈SN

Resp [f(z) cot(πz)]

→ 0 as N →∞

as desired.
To get Euler’s expansion of 1/ sin2w, notice that, when w /∈ Z

Resz=πw
cot(πz)

(z − πw)2
=

d

dz
cot(πz)

∣∣∣∣
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=
π

sin2(πw)
.

Question 11
Integrating the left side once leads to cot z. The right-hand side can also be integrated term-by
term, because of uniform convergence away from the poles, and gives

cot z =
1

z
+

∞∑
n=−∞
n 6=0

(
1

z − nπ
− 1

nπ

)
+A =

1

z
+

∞∑
1

2z

z2 − n2π2
+A

Notice the ‘counterterm’ 1/nπ, needed for convergence; integrating term-by-term from any z0
gives 1/(z − nπ) − 1/(z0 − nπ), and we have set z0 = 0 in all terms, save when n = 0. This
slightly inconsistent choice is leaving an ambiguous additive constant. In the last term, we have
combined terms with opposite signs of n. We can integrate again and get

log sin z = log z +

∞∑
1

(
log(z2 − n2π2)− log(−n2π2)

)
+Az +B.

Both sides are multi-valued, but miraculously (or not) there is only additive ambiguity in the
form of integer multiples of 2πi. So the exponentials are single-valued and lead to the identity
in the problem, modulo a factor of eBeAz. Rule out the eAz term by noticing that both sides
are odd functions of z, and check the value and the derivative at z = 0 to find that B = 0.
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