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Question 1
Let p(z) be a non-constant polynomial. If p(z) 6= 0 for all z ∈ C, then the function 1/p(z) is
holomorphic. In particular, it is continuous. Let p(0) = a, say. For a large enough R > 0,
1/|p(z)| < |a| for |z| ≥ R. Restricting to the closed disk of radius R, the continuous function
1/|p(z)| will achieve its maximum value somewhere; this cannot be on the boundary, since it
takes a greater value |a| at an interior point. So it achieves its maximum at some interior point,
which contradicts the maximum principle.

Question 2
For every q ∈ E, some disk around q is also contained in E, and then q can be connected
to any point in that disk by a straight line segment that lies in E. So if q can/cannot be
connected to p by a continuous or polygonal path, then the same property holds for each point
in a neighborhood of q.
So if E is connected then it is polygonally path connected, else E = Cp

∐
Np.

Conversely, if E is path connected then it is connected: else, E = E1
∐
E2 with both open and

not empty, so a path γ : [0, 1] → E joining γ(0) ∈ E1 with γ(1) ∈ E2 would decompose [0, 1]
into two disjoint subsets γ−1(E1,2). Now let x be the least upper bound of γ−1(E1). Whichever
of the sets x lies in, we get a contradiction with the continuity of γ, because there are points
arbitrarily close to x mapping to the other set (all points above x map to E2 and some points
below, but arbitrarily close to x map to E1).

Question 3
The idea is simple, the point (0, 0) cannot be joined to (1/π, 0) because the obvious path that
does the job, the graph of the function, is discontinuous at 0. But a proof of impossibility
requires a bit more. Let γ : [0, 1]→ G be our path (G is our set) and let C ⊂ [0, 1] be the closed
subset mapping to the vertical segment x = 0, y ∈ [−1, 1]. This contains maximal number a < 1.
(C is closed and bounded so it contains its least upper bound.)
We’ll show γ is discontinuous at a by finding a sequence tn → a with the y-component y(γ(tn))
converging to any prescribed value v ∈ [−1, 1]. Indeed, δ := x(γ(a + ε)) > 0 for small ε > 0,
so by the intermediate value theorem the values of x(γ(t)) cover the interval (0, δ), and we can
find a time t1 < a + ε with y(γ(t1)) = sin(1/x(γ(t1))) = v. Repeat now with ε/2n to get your
sequence.

Question 4 (5.48)
No. Liouville’s theorem applies to analytic functions over C, not just over R. While we can
extend sinx to a holomorphic function of all complex values z, it will not be bounded (growing
exponentially in the imaginary directions).

Question 5 (5.49)
The rectangle is closed. If the function was analytic, it would be continuous, in particular F (z)
would achieve a maximum and hence would be bounded. Periodicity allows you to extend it to
a bounded holomorphic function on all of C, contradicting Liouville’s theorem.

Question 6 (5.55)
As in the hint, integrate Re ln(1 + z) on the circle C of radius 1. There is a trouble point at
z = −1, but we can take the limit of ln(1 + rz) for r < 1 under the integral sign.∮

C
Re ln(1 + z) = Re ln(1) = 0
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but parametrizing we get∫ 2π

0
Re ln(1 + cos θ + i sin θ)dθ =

∫ 2π

0
ln(2 + 2 cos θ)dθ = 2π ln 2 +

∫ 2π

0
ln(2 cos2

θ

2
)dθ =

= 4π ln 2 +

∫ 2π

0
ln(cos2

θ

2
)dθ = 4π ln 2 + 4

∫ π

0
ln(| cos θ|)dθ = 4π ln 2 + 4

∫ π

0
ln(sin θ)dθ

giving the formula.

Question 7 (5.85)
Integrate

∮
ez/zdz around the unit circle using Cauchy’s formula, and take real and imaginary

parts; remember that dz/z = idθ. I think the answers in the book are switched.

Question 8
Fix z0 not on γ, and necessarily some distance d > 0 away from it. Let z be any point in the
disk |z − z0| < d. Write ζ − z = (ζ − z0)− (z − z0),∫

γ

ϕ(ζ)dζ

(ζ − z0)− (z − z0)
=

∫
γ

ϕ(ζ)

1− (z − z0)/(ζ − z0)
dζ

ζ − z0
=

=

∫
γ

∞∑
n=0

(
z − z0
ζ − z0

)n
ϕ(ζ)

dζ

ζ − z0
=

∞∑
n=0

(z − z0)n
∫
γ

ϕ(ζ)dζ

(ζ − z0)n+1

where we integrate the series term-by-term thanks to its uniform convergence in any closed disk
around z0 of radius less than d.
For large z, the integrand is continuous in ζ and converges uniformly to 0 as z → ∞, so the
integral (over the compact interval parametrising γ) also goes to zero.

Question 9

1. If γ is a (simple) closed curve, the integral gives zero when z is outside and ϕ(z) when z
is inside, the first from Cauchy’s theorem and the second from Cauchy’s formula.

2. Choose γ to be the straight line segment S from a to b. Then, I claim that∫ b

a

dζ

ζ − z
= Log

z − b
z − a

(1)

Indeed, Log(z − ζ) is an antiderivative (in ζ) of (ζ − z)−1 in the region ζ ∈ C where z − ζ
is not on the negative real axis, for example when z has a large real part; and we can
then use the complex fundamental theorem of calculus. Noting that the function in (1) is
defined and holomorphic in z, as long as z avoids S, the identity principle then tells us
that (1) must hold for all z off S.

When deforming γ to a general curve, describing the correct value of log at a general point
is more difficult: imagine for instance γ spiraling in many times around b before reaching
it. One answer is that, far away from the axis ab, we must use the same formula (1),
and extend continuously (and holomorphically) to the complement of γ. A more precise
description requires the notion of winding numbers ...

Question 10
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1. If f = u+ iv, we have g(x+ iy) = f(x− iy) = u(x,−y)− iv(x,−y) and so

∂Re g

∂x
=
∂u

∂x
,

∂Im g

∂x
= −∂v

∂x
,

∂Re g

∂y
= −∂u

∂y
,

∂Im g

∂y
=
∂v

∂y
,

and Cauchy-Riemann for g follows from the same for f . (Real differentiability is clear).
2. The assumption implies that f − g vanishes identically on the real axis; the identity principle
then says that f − g ≡ 0 in E.

Question 11
From the previous question we know that the extended f is holomorphic, except possibly on
the real axis, if we have not assumed continuous differentiability. Morera’s theorem tells us to
check the vanishing of

∫
f(z)dz around any rectangle R with sides parallel to the axes. If R

lies completely above or completely below the real axis, vanishing of the integral checks out by
Cauchy. Note now that vanishing also holds when R has one side on the real axis, because we
can view R as a limit of rectangles that just avoid the axis, and pass to the limit in the integral
by continuity of f . Finally, assume that R covers the real axis, and split it into two rectangles,
one above and one below. Then,

∫
f vanishes on each of these subrectangles, but the sum of

the two is
∫
R f because the real edge cancels out in the sum of the integrals.
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