Solutions 7

Question 1

Let $p(z)$ be a non-constant polynomial. If $p(z) \neq 0$ for all $z \in \mathbb{C}$, then the function $1 / p(z)$ is holomorphic. In particular, it is continuous. Let $p(0)=a$, say. For a large enough $R>0$, $1 /|p(z)|<|a|$ for $|z| \geq R$. Restricting to the closed disk of radius R, the continuous function $1 /|p(z)|$ will achieve its maximum value somewhere; this cannot be on the boundary, since it takes a greater value $|a|$ at an interior point. So it achieves its maximum at some interior point, which contradicts the maximum principle.

Question 2

For every $q \in E$, some disk around q is also contained in E, and then q can be connected to any point in that disk by a straight line segment that lies in E. So if q can/cannot be connected to p by a continuous or polygonal path, then the same property holds for each point in a neighborhood of q.
So if E is connected then it is polygonally path connected, else $E=C_{p} \amalg N_{p}$.
Conversely, if E is path connected then it is connected: else, $E=E_{1} \coprod E_{2}$ with both open and not empty, so a path $\gamma:[0,1] \rightarrow E$ joining $\gamma(0) \in E_{1}$ with $\gamma(1) \in E_{2}$ would decompose $[0,1]$ into two disjoint subsets $\gamma^{-1}\left(E_{1,2}\right)$. Now let x be the least upper bound of $\gamma^{-1}\left(E_{1}\right)$. Whichever of the sets x lies in, we get a contradiction with the continuity of γ, because there are points arbitrarily close to x mapping to the other set (all points above x map to E_{2} and some points below, but arbitrarily close to x map to E_{1}).

Question 3

The idea is simple, the point $(0,0)$ cannot be joined to $(1 / \pi, 0)$ because the obvious path that does the job, the graph of the function, is discontinuous at 0 . But a proof of impossibility requires a bit more. Let $\gamma:[0,1] \rightarrow G$ be our path (G is our set) and let $C \subset[0,1]$ be the closed subset mapping to the vertical segment $x=0, y \in[-1,1]$. This contains maximal number $a<1$. (C is closed and bounded so it contains its least upper bound.)
We'll show γ is discontinuous at a by finding a sequence $t_{n} \rightarrow a$ with the y-component $y\left(\gamma\left(t_{n}\right)\right)$ converging to any prescribed value $v \in[-1,1]$. Indeed, $\delta:=x(\gamma(a+\varepsilon))>0$ for small $\varepsilon>0$, so by the intermediate value theorem the values of $x(\gamma(t))$ cover the interval $(0, \delta)$, and we can find a time $t_{1}<a+\varepsilon$ with $y\left(\gamma\left(t_{1}\right)\right)=\sin \left(1 / x\left(\gamma\left(t_{1}\right)\right)\right)=v$. Repeat now with $\varepsilon / 2^{n}$ to get your sequence.

Question 4 (5.48)
No. Liouville's theorem applies to analytic functions over \mathbb{C}, not just over \mathbb{R}. While we can extend $\sin x$ to a holomorphic function of all complex values z, it will not be bounded (growing exponentially in the imaginary directions).

Question 5 (5.49)
The rectangle is closed. If the function was analytic, it would be continuous, in particular $F(z)$ would achieve a maximum and hence would be bounded. Periodicity allows you to extend it to a bounded holomorphic function on all of \mathbb{C}, contradicting Liouville's theorem.

Question 6 (5.55)
As in the hint, integrate $\operatorname{Re} \ln (1+z)$ on the circle C of radius 1. There is a trouble point at $z=-1$, but we can take the limit of $\ln (1+r z)$ for $r<1$ under the integral sign.

$$
\oint_{C} \operatorname{Re} \ln (1+z)=\operatorname{Re} \ln (1)=0
$$

but parametrizing we get

$$
\begin{aligned}
& \int_{0}^{2 \pi} \operatorname{Re} \ln (1+\cos \theta+i \sin \theta) d \theta=\int_{0}^{2 \pi} \ln (2+2 \cos \theta) d \theta=2 \pi \ln 2+\int_{0}^{2 \pi} \ln \left(2 \cos ^{2} \frac{\theta}{2}\right) d \theta= \\
& =4 \pi \ln 2+\int_{0}^{2 \pi} \ln \left(\cos ^{2} \frac{\theta}{2}\right) d \theta=4 \pi \ln 2+4 \int_{0}^{\pi} \ln (|\cos \theta|) d \theta=4 \pi \ln 2+4 \int_{0}^{\pi} \ln (\sin \theta) d \theta
\end{aligned}
$$

giving the formula.

Question 7 (5.85)

Integrate $\oint e^{z} / z d z$ around the unit circle using Cauchy's formula, and take real and imaginary parts; remember that $d z / z=i d \theta$. I think the answers in the book are switched.

Question 8

Fix z_{0} not on γ, and necessarily some distance $d>0$ away from it. Let z be any point in the disk $\left|z-z_{0}\right|<d$. Write $\zeta-z=\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)$,

$$
\begin{aligned}
& \int_{\gamma} \frac{\varphi(\zeta) d \zeta}{\left(\zeta-z_{0}\right)-\left(z-z_{0}\right)}=\int_{\gamma} \frac{\varphi(\zeta)}{1-\left(z-z_{0}\right) /\left(\zeta-z_{0}\right)} \frac{d \zeta}{\zeta-z_{0}}= \\
& =\int_{\gamma} \sum_{n=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{n} \varphi(\zeta) \frac{d \zeta}{\zeta-z_{0}}=\sum_{n=0}^{\infty}\left(z-z_{0}\right)^{n} \int_{\gamma} \frac{\varphi(\zeta) d \zeta}{\left(\zeta-z_{0}\right)^{n+1}}
\end{aligned}
$$

where we integrate the series term-by-term thanks to its uniform convergence in any closed disk around z_{0} of radius less than d.
For large z, the integrand is continuous in ζ and converges uniformly to 0 as $z \rightarrow \infty$, so the integral (over the compact interval parametrising γ) also goes to zero.

Question 9

1. If γ is a (simple) closed curve, the integral gives zero when z is outside and $\varphi(z)$ when z is inside, the first from Cauchy's theorem and the second from Cauchy's formula.
2. Choose γ to be the straight line segment S from a to b. Then, I claim that

$$
\begin{equation*}
\int_{a}^{b} \frac{d \zeta}{\zeta-z}=\log \frac{z-b}{z-a} \tag{1}
\end{equation*}
$$

Indeed, $\log (z-\zeta)$ is an antiderivative $($ in $\zeta)$ of $(\zeta-z)^{-1}$ in the region $\zeta \in \mathbf{C}$ where $z-\zeta$ is not on the negative real axis, for example when z has a large real part; and we can then use the complex fundamental theorem of calculus. Noting that the function in (1) is defined and holomorphic in z, as long as z avoids S, the identity principle then tells us that (1) must hold for all z off S.
When deforming γ to a general curve, describing the correct value of log at a general point is more difficult: imagine for instance γ spiraling in many times around b before reaching it. One answer is that, far away from the axis $a b$, we must use the same formula (1), and extend continuously (and holomorphically) to the complement of γ. A more precise description requires the notion of winding numbers ...

Question 10

1. If $f=u+i v$, we have $g(x+i y)=\overline{f(x-i y)}=u(x,-y)-i v(x,-y)$ and so

$$
\frac{\partial \operatorname{Re} g}{\partial x}=\frac{\partial u}{\partial x}, \quad \frac{\partial \operatorname{Im} g}{\partial x}=-\frac{\partial v}{\partial x}, \quad \frac{\partial \operatorname{Re} g}{\partial y}=-\frac{\partial u}{\partial y}, \quad \frac{\partial \operatorname{Im} g}{\partial y}=\frac{\partial v}{\partial y}
$$

and Cauchy-Riemann for g follows from the same for f. (Real differentiability is clear).
2. The assumption implies that $f-g$ vanishes identically on the real axis; the identity principle then says that $f-g \equiv 0$ in E.

Question 11

From the previous question we know that the extended f is holomorphic, except possibly on the real axis, if we have not assumed continuous differentiability. Morera's theorem tells us to check the vanishing of $\int f(z) d z$ around any rectangle R with sides parallel to the axes. If R lies completely above or completely below the real axis, vanishing of the integral checks out by Cauchy. Note now that vanishing also holds when R has one side on the real axis, because we can view R as a limit of rectangles that just avoid the axis, and pass to the limit in the integral by continuity of f. Finally, assume that R covers the real axis, and split it into two rectangles, one above and one below. Then, $\int f$ vanishes on each of these subrectangles, but the sum of the two is $\int_{R} f$ because the real edge cancels out in the sum of the integrals.

