
Solutions 6

Question 1∮
z̄dz =

∮
(x− iy)(dx+ idy) =

∮
{(x− iy)dx+ (y + ix)dy} =

∫∫
D

(i+ i)dxdy = 2i ·Area(D).

Without differentials, invoke the complex form of Green’s theorem∮
fdz = 2i ·

∫∫
∂f

∂z̄
dxdy, and

∂z̄

∂z̄
= 1.

Question 2
As z ranges over the arc of angle π/8, z2 ranges over the doubled arc so its real part is bounded
below by R2/

√
2; the integrand therefore has quadratic-exponential decay and the integral van-

ishes, the arc length being πR/8.
The integral on the real line converges to 1

2

√
π. Parametrising z = 21/4t(cos π8 + i sin π

8 ) gives
the contribution of the ray as

−21/4(cos
π

8
+ i sin

π

8
)

∫ ∞
0

e−t
2
(cos t2 − i sin t2)dt.

Since the contour integral vanishes by Cauchy, we get that

1

2

√
π(cos

π

8
− i sin

π

8
) · 2−1/4 =

∫ ∞
0

e−t
2
(cos t2 − i sin t2)dt.

With cos π8 = 2−3/4
√√

2 + 1, we get the advertised formula.

Question 3
As before, the real half-axis contributes 1

2

√
π. We parametrize the ray of argument π/4 by

z = t(1 + i)/
√

2 and get form the vanishing of the contour integral

(1 + i)√
2

∫ ∞
0

(cos t2 − i sin t2)dt =
1

2

√
π

whence ∫ ∞
0

cos t2dt =

∫ ∞
0

sin t2dt =

√
π

8

assuming that the arc contribution to the integral vanishes in the R→∞ limit.
Now that vanishing is a bit subtle, because the integrand decays exponentially on most of the
arc, but not near the π/4 ray. The point is that it fails to decay on a narrow enough sliver.
Subdivide the range [0, π/4] of the argument into [0, π/4−ε] and [π/4−ε, π/4], with ε to be fixed
later. On the former, the integrand e−z

2
is bounded in modulus by e−R

2 cosπ/2−2ε = e−R
2 sin 2ε.

This is overestimated by e−R
2ε, for small ε. The remaining arc has length Rε and the integrand

is bounded by 1 in absolute value. Overall, we get for the arc integral the bound

πR

4
exp(−R2ε) +Rε.

Choosing now ε = R−3/2 gives the bound πR
4 e
−
√
R +R−1/2, which goes to 0 as R→∞.
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Question 4
We apply Cauchy’s theorem to a contour CR consisting of the interval [−R,R] and the upper
half-circle of radius R. This encloses (for large R) the two points z = ±1+ i where the integrant
fails to be holomorphic. We also use the integrand eiz/(4+z4), which has the benefit of decaying
on the half-circle as R →∞ because |eiz| ≤ 1. We can isolate the two bad points by two small
circles C± as in the proof of Cauchy’s formula, or else split up the integral into the two quarter-
circles (noting that the imaginary axis is traversed twice in opposite directions so its contribution
cancels out); Cauchy’s theorem implies∮

CR

eizdz

z4 + 4
=

∮
C+

eizdz

z4 + 4
+

∮
C−

eizdz

z4 + 4
.

For the C+ contribution we split the denominator as (z − 1 − i)(z + 1 + i)(z2 + 2i); for C− as
(z + 1− i)(z − 1 + i)(z2 − 2i). Cauchy gives∮

C+

eizdz

z4 + 4
=

∮
C+

eiz

(z + 1 + i)(z2 + 2i)

dz

(z − 1− i)
= 2πi

ei−1

(2 + 2i)4i
=

π

8e
(1− i)(cos 1 + i sin 1);

∮
C−

eizdz

z4 + 4
=

∮
C−

eiz

(z − 1 + i)(z2 − 2i)

dz

(z + 1− i)
= 2πi

e−i−1

(−2 + 2i)(−4i)
=

π

8e
(1+i)(cos 1−i sin 1);

Their sum is π
4e(cos 1 + sin 1). On the other hand,∮

CR

eizdz

z4 + 4
=

∫ R

−R

eixdx

x4 + 1
+ iR

∫ π

0

exp(Reit)dt

R4e4it + 4

The second integrand can be bounded by (R4−4)−1 so the second term is bounded by πR/(R4−4)
and goes to 0 as R→∞. On the other hand, the first term goes to∫ ∞

−∞

cosxdx

x4 + 4
+ i

∫ ∞
−∞

sinxdx

x4 + 4
.

This must equal π
4e(cos 1+sin 1), so that is the value of the cosine integral — twice the integral in

the question — and the sine integral vanishes (which also follows because it is an odd function).

Question 5
For (a), the circle of radius 4 centered at 1 includes the singularity z = πi so Cauchy tells us the
answer is e3πi = −1 · 2πi. For (b), we have

√
π2 + 4 +

√
π2 + 4 = 2

√
π2 + 4 > 6 so the function

is holomorphic inside the ellipse and we get 0.

Question 6
The problem points are at z = ±1. The first rectangle includes both, the second only the point
z = +1. Find the contributions at the two points by factoring z2 − 1 = (z − 1)(z + 1) as

cosπ

2
= −1

2
, respectively

cos(−π)

−2
=

1

2

So the answers are (a) 0 and (b) −πi, from +1 only.

Question 7
The integral of zeiz/(z4 + 4) on a large half-circle is bounded by 2πR/R4 = 2πR−3 and vanishes
in the R → ∞ limit. (Choose R4 > 8 large so that |z4 + 4| ≥ R4/2.) There are two problem
points in the upper half-plane, at z = 1 + i and z = −1 + i. We factor

zeiz

z4 + 4
=

zeiz

(z − (1 + i))(z + 1 + i)(z2 + 2i)
=

zeiz

(z − (−1 + i))(z − 1 + i)(z2 − 2i)
,
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giving contributions to the Cauchy formula

exp(i(1 + i))

2 · 4i
=

cos 1 + i sin 1

8ie
at z = 1+i and

exp(i(−1 + i))

2 · (−4i)
= −cos 1− i sin 1

8ie
at z = 1+i,

so the contributions add up to give the formula∫ ∞
0

x sinxdx

x4 + 4
=

1

2

∫ ∞
−∞

x sinxdx

x4 + 4
= π · cos 1 + i sin 1− cos 1 + i sin 1

8ie
=
π sin 1

4e

Question 8
The integration contour QR in both cases now consists of the real interval [0, R], the first quarter-
circle of radius R, and the imaginary interval [0, iR] traveled backwards. There is only one bad
point at z = a(1 + i)

√
2 and writing the integrand as

dz

z4 + a4
=

1

(z2 + ia2)(z + (1 + i)a/
√

2

dz

z − (1 + i)a/
√

2

gives a Cauchy contribution of 2πi/2ia2 ·
√

2(1 + i)a. The straight line integrals give

(1− i)
∫ R

0

dx

x4 + a4

while the circle integral is shown to vanish in the R → ∞ limit by the usual argument. So the
answer is ∫ ∞

0

dx

x4 + a4
=

2πi

2ia3 · 2
√

2
=

π

a32
√

2
.

The second integral works similarly but now the Cauchy contribution at z = (1 + i)a/
√

2 is

2πi
(1 + i)a/

√
2

2ia3 ·
√

2(1 + i)
= 2π/4a2 = π/2a2

and this is now twice the desired integral, because∫ ∞
0

(iy)d(iy)

y4 + a4
= −

∫ ∞
0

(x)dx

x4 + a4

and this appears with a minus sign in the contour integral, therefore

lim
R→∞

∮
QR

zdz

z4 + z4
= 2

∫ ∞
0

xdx

x4 + a4

Question 9
For α = m/n, z 7→ zα is a composition of z 7→ w = zm and w 7→ w1/n, both of which are
holomorphic (the second as the inverse of a holomorphic function with non-vanishing derivative.
So the composition is holomorphic. The chain rule gives

d

dz
(zα) =

d

dz
(w1/n) =

1

n
w(1−n)/ndw

dz
=

1

n
w(1−n)/nmzm−1 =

m

n
zm−1−m(n−1)/n =

m

n
zm/n−1 = αzα−1

as desired.
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For real α, to check holomorphy without invoking the exp(αLogz) definition, it is easiest to use
the polar form of the CR equations (HW2 Q6):

r
∂ (rα cos(αθ))

∂r
= αrα cos(αθ) =

∂ (rα sin(αθ))

∂θ
,

∂ (rα cos(αθ))

∂θ
= −αrα sin(αθ) = r

∂ (rα sin(αθ))

∂r
;

this, and continuous real-differentiability, imply the holomorphy of the directly defined zα. To
check the identity d(zα)/dz = αzα−1 we can just restrict to real z, where we know the formula,
and the identity principle then extends it to C minus the negative real axis.
Since we can keep differentiating, the kth derivative is α(α−1)...(α−k+1)

k! zα−k. The Taylor series of
the function around z = 1 is then as written, and converges on any disk centered at 1 on which
the function is holomorphic, in particular, on the disk of radius 1.
(That is in fact the disk of convergence whenever α is not an integer; the function stops being
holomorphic at z = 0.)
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