Solutions 5

Question 1

As in the hint, if $a(z)=\sum a_{n} z^{n} \equiv 0$, then $a(0)=a^{\prime}(0)=a^{\prime \prime}(0)=\cdots=0$. But up to factorials, these are the coefficients a_{n}. The key point is that we can differentiate the series term-by-term.

Question 2

The ratio of successive terms in the series is $z^{2} /(-4)(n+1)(n+k+1)$; for any z, it goes to 0 with n, thus guaranteeing the infinite radius of convergence. We can safely differentiate term-by term to get

$$
\begin{aligned}
z J_{k}^{\prime}(z) & =\sum_{n=0}^{\infty}(k+2 n)(-1)^{n} \frac{(z / 2)^{k+2 n}}{n!(n+k)!} \\
z^{2} J_{k}^{\prime \prime}(z) & =\sum_{n=0}^{\infty}(k+2 n)(k+2 n-1)(-1)^{n} \frac{(z / 2)^{k+2 n}}{n!(n+k)!}
\end{aligned}
$$

Renumbering for convenience $n \mapsto n-1$ the terms in $z^{2} J_{k}(z)$ gives

$$
\sum_{n=0}^{\infty} 4 n(n+k)(-1)^{n-1} \frac{(z / 2)^{k+2 n}}{n!(n+k)!}
$$

and the three series for $J, z J^{\prime}, z^{2} J^{\prime \prime}$ sum term-by-term to $\sum_{n=0}^{\infty}(-1)^{n} k^{2}\left(\frac{z}{2}\right)^{k+2 n} / n!(n+k)!$, giving the differential equation.

Second Question 2

$\left(1-z+z^{2}\right)=(1+\omega z)(1+\bar{\omega} z)$ where $\omega=(-1+i \sqrt{3}) / 2$. So

$$
\frac{1}{1-z+z^{2}}=\frac{1}{i \sqrt{3}}\left(\frac{\omega}{1+\omega z}-\frac{\bar{\omega}}{1+\bar{\omega} z}\right)
$$

So we get for the coefficient of z^{n} in the expansion

$$
\frac{(-1)^{n}}{i \sqrt{3}}\left(\omega^{n+1}-\bar{\omega}^{n+1}\right)=\frac{(-1)^{n}}{\sqrt{3}} 2 \sin \frac{2 \pi(n+1)}{3}
$$

giving the sequence $1,1,0,-1,-1,0,1,1,0, \ldots$.
The Cauchy recursion on the other hand gives $a_{0}=1, a_{1}-a_{0}=0, a_{2}-a_{1}+a_{0}=0, a_{3}-a_{2}+a_{1}=0$ that is, $a_{n+2}=a_{n+1}-a_{n}$, and we recognize the same 6 -periodic sequence after computing the first eight terms as above.

Question 3

From $1-i$ to $1+i, z=1+t i,-1 \leq t \leq 1$ gives

$$
\int_{-1}^{1} \frac{(1-t i) i d t}{1+t^{2}}=\left.i \arctan (t)\right|_{-1} ^{1}+\left.\frac{1}{2} \log \left(1+t^{2}\right)\right|_{-1} ^{1}=\frac{\pi i}{2}
$$

Now the other three edge integrals are obtained by multiplying z by i, i^{2}, i^{3}. Since $\frac{d z}{z}$ is unchanged under that multiplication, all contributions equal $\frac{\pi i}{2}$ and the answer is $2 \pi i$.
For $\oint z^{m} d z$ on the unit circle, parametrize by $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$ to get

$$
\int_{0}^{2 \pi} e^{i m \theta} \cdot i e^{i \theta} d \theta=i \cdot \int_{0}^{2 \pi} e^{i m+1 \theta} d \theta=i \int_{0}^{2 \pi}(\cos (m+1) \theta+i \sin (m+1) \theta) d \theta
$$

which vanishes if $m+1 \neq 0$. Else, we get $i \int_{0}^{2 \pi} d \theta=2 \pi i$.

Question 4

(Without using the complex fundamental theorem of calculus) (a) Parametrize, $z=2 e^{i \theta}$ to get

$$
\begin{aligned}
& 2 i \cdot \int_{0}^{\pi / 2}\left(4 e^{3 i \theta}+3 \cdot 2 e^{2 i \theta}\right) d \theta=\left.2 i\left(\frac{4 e^{3 i \theta}}{3 i}+\frac{6 e^{2 i \theta}}{2 i}\right)\right|_{0} ^{\pi / 2}=\frac{8}{3}(-i-1)+6(-1-1)=-\frac{44}{3}-\frac{8 i}{3} \\
& (\mathrm{~b}) z=2+t(i-1), 0 \leq t \leq 2 \\
& (i-1) \int_{0}^{2}\left[(2+(i-1) t)^{2}+3(2+(i-1) t] d t=(i-1) \int_{0}^{2}\left[4+4(i-1) t-2 i t^{2}+6+3(i-1) t\right] d t=\right. \\
& \quad(i-1) \int_{0}^{2}\left(10+7(i-1) t-2 i t^{2}\right) d t=(i-1)\left(20+14(i-1)-\frac{16 i}{3}\right)=-\frac{44}{3}-\frac{8 i}{3}
\end{aligned}
$$

(c) Have fun, but you know what you should get.

Question 5

Recalling the binomial expansion, with $\binom{m}{p}:=\frac{m!}{p!(m-p)!}$, we have

$$
\oint\left(z+z^{-1}\right)^{2 n} \frac{d z}{z}=\oint\left(\sum_{k=0}^{2 n}\binom{2 n}{k} z^{2 k-2 n-1}\right) d z=2 \pi i\binom{2 n}{n}
$$

all terms other than z^{-1} contributing 1 by Question 6.
At the same time, converting to a parametrized integral by $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$ and minding that $z+z^{-1}=2 \cos \theta$ on the unit circle,

$$
\oint\left(z+z^{-1}\right)^{2 n} \frac{d z}{z}=2^{2 n} i \int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta
$$

and comparing the two expressions Wallis' formula.

Question 6*

Choose an $\varepsilon>0$. Because $\sum\left|a_{n}\right|$ converges, there exist an N_{ε} so that the sum of any finite number of terms a_{k} with $k>N_{\varepsilon}$ is $<\varepsilon$ in absolute value. Call the terms past N_{ε} negligible. In particular, the sum up to N_{ε} is no more than ε in distance away from the full $\sum a_{n}$.
Now let M_{ε} be large enough so that the b_{k} with $k \leq M_{\varepsilon}$ include all the a_{n} with $n \leq N_{\varepsilon}$ (and the correct number of times, in case there are repeated terms). Then, $\sum_{k \leq M_{\varepsilon}} b_{n}$ differs from $\sum_{n \leq N_{\varepsilon}} a_{n}$ only by negligible terms which might be included among the b_{k}. So

$$
\left|\sum_{k \leq M_{\varepsilon}} b_{k}-\sum a_{n}\right| \leq\left|\sum_{k \leq M_{\varepsilon}} b_{k}-\sum_{n \leq N_{\varepsilon}} a_{n}\right|+\left|\sum_{n>N_{\varepsilon}} a_{n}\right| \leq \varepsilon+\varepsilon=2 \varepsilon
$$

so that $\sum b_{k}$ converges to $\sum a_{n}$.

