Solutions 5

Question 1
As in the hint, if a(z) = > apz™ = 0, then a(0) = a’(0) = a”(0) = --- = 0. But up to factorials,
these are the coefficients a,,. The key point is that we can differentiate the series term-by-term.

Question 2

The ratio of successive terms in the series is 22/(—4)(n + 1)(n + k + 1); for any z, it goes to 0
with n, thus guaranteeing the infinite radius of convergence. We can safely differentiate term-by
term to get
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Renumbering for convenience n +— n — 1 the terms in 22.J;(2) gives
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and the three series for J,zJ', z22J" sum term-by-term to Y o0 (—1)"k? (%)an /nl(n + k)l
giving the differential equation.

Second Question 2
(1—2z+2%) = (14 wz2)(1 +©2) where w = (—1 +1iv/3)/2. So
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So we get for the coefficient of 2™ in the expansion
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giving the sequence 1,1,0,—1,-1,0,1,1,0,....
The Cauchy recursion on the other hand gives ag = 1, ay—ag = 0, aoc—a1+ag = 0, az—as+a; =0

that is, ant2 = ant1 — ay, and we recognize the same 6-periodic sequence after computing the
first eight terms as above.
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Question 3
From1—itol+41¢ 2=1+1t, —1 <t <1 gives
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Now the other three edge integrals are obtained by multiplying z by i,4%,4%. Since dz—z

changed under that multiplication, all contributions equal 7 and the answer is 2.
For 39 2™dz on the unit circle, parametrize by z = ¢?,0 < 6 < 27 to get
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which vanishes if m + 1 #£ 0. Else, we get z'fo% df = 27i.

Question 4
(Without using the complex fundamental theorem of calculus) (a) Parametrize, z = 2¢ to get
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(b)z=241t(i—1),0<t <2
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(c) Have fun, but you know what you should get.

Question 5

Recalling the binomial expansion, with (’;‘) = p!(lep)!, we have
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all terms other than z~! contributing 1 by Question 6.
At the same time, converting to a parametrized integral by z = ¢, 0 < 6 < 27 and minding
that 2z + 27! = 2cos # on the unit circle,
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and comparing the two expressions Wallis’ formula.

Question 6*

Choose an € > 0. Because ) |a,| converges, there exist an N, so that the sum of any finite
number of terms ay, with & > N; is < ¢ in absolute value. Call the terms past N. negligible. In
particular, the sum up to IV is no more than ¢ in distance away from the full > a,.

Now let M. be large enough so that the by with k < M, include all the a,, with n < N (and
the correct number of times, in case there are repeated terms). Then, » ;. by differs from
Y o< N. @n only by negligible terms which might be included among the by. So
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so that > by converges to > ay.



