
Solutions 4

Question 1
By our assumption g is continuously real-differentiable. The second CR equation for g = U+iV ,
U = ux, V = −uy reads

∂2u

∂y∂x
=

∂2u

∂x∂y

which is the equality of the mixed partials and holds by the C2 assumption on u. The first
equation

∂2u

∂x2
= −∂

2u

∂y2

is the harmonic condition.
For the last part, if u+ iv is holomorphic, then

g =
∂u

∂x
− i∂u

∂y
=
∂u

∂x
+ i

∂v

∂x
= f ′

as desired.

Question 2
For u = x3 − 3xy2 we have ∂u/∂x − i∂u∂y = 3x2 − 3y2 + 6ixy = 3(x + iy)2 = 3z2, which is
the derivative of f(z) = z3. By Problem 1, the harmonic conjugate of u is the imaginary part
3x2y − y3 of z3.
For part (b), it helps to spot Re(z̄2) in the numerator! So the function is

Re

(
z̄2

|z|4

)
= Re

(
1

z2

)
and the harmonic conjugate is the imaginary part of the same.

Question 3
We can factor out z/3 to write the series as

z

3

∞∑
n=0

(
3− z

3

)n

and the geometric series we see is absolutely convergent for |(3 − z)/3| < 1 ⇔ |z − 3| < 3 and
divergent for |z − 3| ≥ 3. It converges uniformly on any strictly smaller disk centered at z = 3.
So our original series is also absolutely convergent in that open disk, and uniformly convergent
on any smaller disk: the factor z can be bounded above by the constant 6 so does not spoil the
absolute or uniform convergence.
However, the original series also converges at z = 0, because all the terms vanish.
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Question 4
(a) |x| ≤ 1 because

∑ 1
n2 converges; (b) |x| < 2 pretty clear; (c) any x, ratio test or comparison

test with
∑ yn

n! by setting y =
√
|x|; (d) x = 0 only, ratio test.

Question 5
We have limn→∞ (nn)1/n = limn→∞ n =∞, so R = 0 by Hadamard.

Now limn→∞
(
n2
)1/n

=
(
limn→∞ n

1/n
)2

= 1 because 1
n log n → 0, by l’Hôpital say, so R = 1.

We write

∞∑
n=0

n2zn =
∞∑
n=0

n(n− 1)zn +
∞∑
n=0

nzn = z2
∞∑
n=0

n(n− 1)zn−2 + z
∞∑
n=0

nzn−1 =

= z2
d2

dz2

∞∑
n=0

zn + z
d

dz

∞∑
n=0

zn = z2
d2

dz2
1

1− z
+ z

d

dz

1

1− z
=

z + z2

(1− z)3

Remark: You can also get the radii of convergence by using the ratio test.

Question 6
Using the triangle inequality, it suffices to show that we can keep |zk

∑
n≥k anz

n−k| < |a0|,
for small |z|. If r is the radius of convergence of the series, then |an|ρn → 0 for any ρ < r.
Keeping |z| < ρ/2 say, we get |anzn−k| < C/2n for all n ≥ k and some constant C. Then,∑

n≥k |anzn−k| < 2C. Confine now z so that, in addition to the above, 2C · |z|k < |a0|.

Question 7

1− z
1 + z

· 1 + z

1− z
= 1,

and that product has infinite radius of convergence. But the series expansions for each of the
two factors near z = 0 (which you can derive easily from the geometric series) has radius of
convergence 1.
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