Solutions 4

Question 1

By our assumption g is continuously real-differentiable. The second CR equation for $g=U+i V$, $U=u_{x}, V=-u_{y}$ reads

$$
\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}
$$

which is the equality of the mixed partials and holds by the C^{2} assumption on u. The first equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial y^{2}}
$$

is the harmonic condition.
For the last part, if $u+i v$ is holomorphic, then

$$
g=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=f^{\prime}
$$

as desired.

Question 2

For $u=x^{3}-3 x y^{2}$ we have $\partial u / \partial x-i \partial u \partial y=3 x^{2}-3 y^{2}+6 i x y=3(x+i y)^{2}=3 z^{2}$, which is the derivative of $f(z)=z^{3}$. By Problem 1, the harmonic conjugate of u is the imaginary part $3 x^{2} y-y^{3}$ of z^{3}.
For part (b), it helps to spot $\operatorname{Re}\left(\bar{z}^{2}\right)$ in the numerator! So the function is

$$
\operatorname{Re}\left(\frac{\bar{z}^{2}}{|z|^{4}}\right)=\operatorname{Re}\left(\frac{1}{z^{2}}\right)
$$

and the harmonic conjugate is the imaginary part of the same.

Question 3

We can factor out $z / 3$ to write the series as

$$
\frac{z}{3} \sum_{n=0}^{\infty}\left(\frac{3-z}{3}\right)^{n}
$$

and the geometric series we see is absolutely convergent for $|(3-z) / 3|<1 \Leftrightarrow|z-3|<3$ and divergent for $|z-3| \geq 3$. It converges uniformly on any strictly smaller disk centered at $z=3$. So our original series is also absolutely convergent in that open disk, and uniformly convergent on any smaller disk: the factor z can be bounded above by the constant 6 so does not spoil the absolute or uniform convergence.
However, the original series also converges at $z=0$, because all the terms vanish.

Question 4

(a) $|x| \leq 1$ because $\sum \frac{1}{n^{2}}$ converges; (b) $|x|<2$ pretty clear; (c) any x, ratio test or comparison test with $\sum \frac{y^{n}}{n!}$ by setting $y=\sqrt{|x|} ; ~(\mathrm{~d}) x=0$ only, ratio test.

Question 5

We have $\lim _{n \rightarrow \infty}\left(n^{n}\right)^{1 / n}=\lim _{n \rightarrow \infty} n=\infty$, so $R=0$ by Hadamard.
Now $\lim _{n \rightarrow \infty}\left(n^{2}\right)^{1 / n}=\left(\lim _{n \rightarrow \infty} n^{1 / n}\right)^{2}=1$ because $\frac{1}{n} \log n \rightarrow 0$, by l'Hôpital say, so $R=1$.
We write

$$
\begin{aligned}
\sum_{n=0}^{\infty} n^{2} z^{n} & =\sum_{n=0}^{\infty} n(n-1) z^{n}+\sum_{n=0}^{\infty} n z^{n}=z^{2} \sum_{n=0}^{\infty} n(n-1) z^{n-2}+z \sum_{n=0}^{\infty} n z^{n-1}= \\
& =z^{2} \frac{d^{2}}{d z^{2}} \sum_{n=0}^{\infty} z^{n}+z \frac{d}{d z} \sum_{n=0}^{\infty} z^{n}=z^{2} \frac{d^{2}}{d z^{2}} \frac{1}{1-z}+z \frac{d}{d z} \frac{1}{1-z}=\frac{z+z^{2}}{(1-z)^{3}}
\end{aligned}
$$

Remark: You can also get the radii of convergence by using the ratio test.

Question 6

Using the triangle inequality, it suffices to show that we can keep $\left|z^{k} \sum_{n \geq k} a_{n} z^{n-k}\right|<\left|a_{0}\right|$, for small $|z|$. If r is the radius of convergence of the series, then $\left|a_{n}\right| \rho^{n} \rightarrow 0$ for any $\rho<r$. Keeping $|z|<\rho / 2$ say, we get $\left|a_{n} z^{n-k}\right|<C / 2^{n}$ for all $n \geq k$ and some constant C. Then, $\sum_{n \geq k}\left|a_{n} z^{n-k}\right|<2 C$. Confine now z so that, in addition to the above, $2 C \cdot|z|^{k}<\left|a_{0}\right|$.

Question 7

$$
\frac{1-z}{1+z} \cdot \frac{1+z}{1-z}=1
$$

and that product has infinite radius of convergence. But the series expansions for each of the two factors near $z=0$ (which you can derive easily from the geometric series) has radius of convergence 1.

