Solutions 3

Question 1

The Jacobian matrix for the change from Cartesian to polar coordinates is

$$
J=\left[\begin{array}{ll}
\partial r / \partial x & \partial \theta / \partial x \\
\partial r / \partial y & \partial \theta / \partial y
\end{array}\right]=\left[\begin{array}{cc}
x / r & -y / r^{2} \\
y / r & x / r^{2}
\end{array}\right]
$$

and so we get from the 2-dimensional real chain rule

$$
\left[\begin{array}{l}
\partial u / \partial x \\
\partial u / \partial y
\end{array}\right]=J \cdot\left[\begin{array}{l}
\partial u / \partial r \\
\partial u / \partial \theta
\end{array}\right], \quad\left[\begin{array}{l}
\partial v / \partial x \\
\partial v / \partial y
\end{array}\right]=J \cdot\left[\begin{array}{l}
\partial v / \partial r \\
\partial v / \partial \theta
\end{array}\right]
$$

The Cartesian CR equations

$$
\left[\begin{array}{l}
\partial u / \partial x \\
\partial u / \partial y
\end{array}\right]=\left[\begin{array}{c}
\partial v / \partial y \\
-\partial v / \partial x
\end{array}\right]
$$

become in polar coordinates (we switch the rows of J and change the sign of the bottom row)

$$
\left[\begin{array}{cc}
x / r & -y / r^{2} \\
y / r & x / r^{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\partial u / \partial r \\
\partial u / \partial \theta
\end{array}\right]=\left[\begin{array}{cc}
y / r & x / r^{2} \\
-x / r & y / r^{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\partial v / \partial r \\
\partial v / \partial \theta
\end{array}\right]
$$

which we can solve to

$$
\left[\begin{array}{l}
\partial u / \partial r \\
\partial u / \partial \theta
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 / r \\
-r & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\partial v / \partial r \\
\partial v / \partial \theta
\end{array}\right]=\left[\begin{array}{c}
1 / r \cdot \partial v / \partial \theta \\
-r \cdot \partial v / \partial r
\end{array}\right],
$$

so finally

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r} .
$$

Question 2

Let as usual $f=u+i v$. We know that $f^{\prime}(z)=p+i q$, where the Jacobian matrix of f is

$$
\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\left[\begin{array}{cc}
p & -q \\
q & p
\end{array}\right]
$$

so $f^{\prime}=u_{x}+i v_{x}$. But

$$
\partial f / \partial z=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right)(u+i v)=\frac{u_{x}+v_{y}}{2}+i \frac{v_{x}-u_{y}}{2}=u_{x}+i v_{x}
$$

by CR, as needed. To check Cauchy-Riemann for $f^{\prime}=\partial u / \partial x+i \partial v / \partial x$, use the CR equations for u, v and the equality of the mixed partials to get

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x} \\
\frac{\partial^{2} u}{\partial y \partial x} & =\frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial^{2} v}{\partial x^{2}}
\end{aligned}
$$

Question 3

Horizontal lines require the imaginary part to be constant, and the curves where y / x is constant are straight lines through the origin. Vertical lines have the real part $x^{2}+y^{2}$ constant, which describes circles centered at 0 . So the polar coordinate grid is mapped to the Cartesian coordinate grid.
Since $\partial u / \partial x=2 x$ and $\partial v / \partial y=1 / x$, CR fails for most x. The curve $t \mapsto(x, y)=(t, t)$ gets transformed into the curve $t \mapsto\left(2 t^{2}, 1\right)$ and $t \mapsto(1, t)$ gets mapped to the horizontal parabola $t \mapsto\left(t^{2}+1, t\right)$. The original curves meet at $(x, y)=(1,1)$ with angle $\pi / 4$ but the angle of the second set of curves at their meeting point $(2,1)$ is not $\pi / 4$, as the first curve is horizontal and the slope of the second velocity vector is $1 / 2$.
For the last part, note that $x^{2}+y^{2}$ is not harmonic so it cannot be the real part of a holomorphic function.

Question 4

The function is clearly real-differentiable. With $u=e^{x} \cos y$ and $v=e^{x} \sin y$, we have

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=e^{x} \cos y, & \frac{\partial u}{\partial y}=-e^{x} \sin y \\
\frac{\partial v}{\partial x}=e^{x} \sin y, & \frac{\partial v}{\partial y}=e^{x} \cos y
\end{array}
$$

and Cauchy-Riemann implies complex-differentiability. The derivative is then $\partial u / \partial x+i \partial v / \partial x=$ $e^{x}(\cos y+i \sin y)$ and agrees with the function itself. The last check follows from the addition formulae for \sin and cos.

Question 5

Note that $\pi / 4=2 \pi / 8$ and $\pi / 2=4 \pi / 8$, so by symmetry, $\arg (\exp (\pi i / 4)+\exp (\pi i / 2))=3 \pi i / 8$. So $\tan (3 \pi / 8)=\operatorname{Im} / \operatorname{Re}$ of that sum which is $(1+\sqrt{2} / 2) /(\sqrt{2} / 2)=1+\sqrt{2}$.
For the second part, note that $(2+i)(3+i)=5+5 i$ and so $\arg (2+i)+\arg (3+i)=\arg (5+5 i)=$ $\pi / 4$; but these arguments are $\tan ^{-1}(1 / 2)$ and $\tan ^{-1}(1 / 3)$, respectively.

Question 6

Yes (it's $\exp (i z)$); No; No; Yes (it's $z \cdot \exp (z))$. A Cauchy-Riemann computation settles them all, good luck.

Question 7

$$
\begin{array}{r}
\cos z=\cos (x+i y)=\cos x \cos (i y)-\sin x \sin (i y)=\cos x \cosh (-y) \\
-\sin x \sinh (-y) / i=\cos x \cosh (-y)-i \sin x \sinh y,
\end{array}
$$

similarly for sin. The absolute values now come out by summing the squares of real and imaginary parts:

$$
\begin{array}{r}
|\cos z|^{2}=\cos ^{2} x \cosh ^{2} y+\sin ^{2} x \sinh ^{2} y=\cos ^{2} x+\cos ^{2} x\left(\cosh ^{2} y\right)-1+\sin ^{2} x \sinh ^{2} y= \\
\cos ^{2} x+\cos ^{2} x \sinh ^{2} y+\sin ^{2} x \sinh ^{2} y=\cos ^{2} x+\sinh ^{2} y,
\end{array}
$$

and similarly for $|\sin z|^{2}$.

Question 8

Parametrize the lines as $u+i t$, fixed u, or $t+i v$, fixed v, and use the formulas from the previous exercise; for instance, the image of a vertical line $\cos (u+i t)=\cos u \cosh t-i \sin u \sinh t$ is a
centered, parametized half-hyperbola, satisfying the equation

$$
\left(\frac{x}{\cos u}\right)^{2}-\left(\frac{y}{\sin u}\right)^{2}=1
$$

Something special happens when $\sin u=0$, when you just sweep out the rays $(-\infty,-1]$ or $[1, \infty)$ twice, from ∞ and back: the hyperbola gets flattened out to the two rays, and when $\cos u=0$, when you sweep out the imaginary axis.

