
Solutions 3

Question 1
The Jacobian matrix for the change from Cartesian to polar coordinates is

J =

[
∂r/∂x ∂θ/∂x
∂r/∂y ∂θ/∂y

]
=

[
x/r −y/r2
y/r x/r2

]
and so we get from the 2-dimensional real chain rule[

∂u/∂x
∂u/∂y

]
= J ·

[
∂u/∂r
∂u/∂θ

]
,

[
∂v/∂x
∂v/∂y

]
= J ·

[
∂v/∂r
∂v/∂θ

]
The Cartesian CR equations [

∂u/∂x
∂u/∂y

]
=

[
∂v/∂y
−∂v/∂x

]
become in polar coordinates (we switch the rows of J and change the sign of the bottom row)[

x/r −y/r2
y/r x/r2

]
·
[
∂u/∂r
∂u/∂θ

]
=

[
y/r x/r2

−x/r y/r2

]
·
[
∂v/∂r
∂v/∂θ

]
which we can solve to [

∂u/∂r
∂u/∂θ

]
=

[
0 1/r
−r 0

]
·
[
∂v/∂r
∂v/∂θ

]
=

[
1/r · ∂v/∂θ
−r · ∂v/∂r

]
,

so finally

r
∂u

∂r
=
∂v

∂θ
,

∂u

∂θ
= −r∂v

∂r
.

Question 2
Let as usual f = u+ iv. We know that f ′(z) = p+ iq, where the Jacobian matrix of f is[

ux uy
vx vy

]
=

[
p −q
q p

]
so f ′ = ux + ivx. But

∂f/∂z =
1

2
(∂x − i∂y)(u+ iv) =

ux + vy
2

+ i
vx − uy

2
= ux + ivx

by CR, as needed. To check Cauchy-Riemann for f ′ = ∂u/∂x + i∂v/∂x, use the CR equations
for u, v and the equality of the mixed partials to get

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
,

∂2u

∂y∂x
=

∂2u

∂x∂y
= −∂

2v

∂x2
.
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Question 3
Horizontal lines require the imaginary part to be constant, and the curves where y/x is con-
stant are straight lines through the origin. Vertical lines have the real part x2 + y2 constant,
which describes circles centered at 0. So the polar coordinate grid is mapped to the Cartesian
coordinate grid.
Since ∂u/∂x = 2x and ∂v/∂y = 1/x, CR fails for most x. The curve t 7→ (x, y) = (t, t) gets
transformed into the curve t 7→ (2t2, 1) and t 7→ (1, t) gets mapped to the horizontal parabola
t 7→ (t2 + 1, t). The original curves meet at (x, y) = (1, 1) with angle π/4 but the angle of the
second set of curves at their meeting point (2, 1) is not π/4, as the first curve is horizontal and
the slope of the second velocity vector is 1/2.
For the last part, note that x2+y2 is not harmonic so it cannot be the real part of a holomorphic
function.

Question 4
The function is clearly real-differentiable. With u = ex cos y and v = ex sin y, we have

∂u

∂x
= ex cos y,

∂u

∂y
= −ex sin y,

∂v

∂x
= ex sin y,

∂v

∂y
= ex cos y,

and Cauchy-Riemann implies complex-differentiability. The derivative is then ∂u/∂x+i∂v/∂x =
ex(cos y + i sin y) and agrees with the function itself. The last check follows from the addition
formulae for sin and cos.

Question 5
Note that π/4 = 2π/8 and π/2 = 4π/8, so by symmetry, arg (exp(πi/4) + exp(πi/2)) = 3πi/8.
So tan(3π/8) = Im/Re of that sum which is

(
1 +
√

2/2
)
/(
√

2/2) = 1 +
√

2.
For the second part, note that (2+ i)(3+ i) = 5+5i and so arg(2+ i)+arg(3+ i) = arg(5+5i) =
π/4; but these arguments are tan−1(1/2) and tan−1(1/3), respectively.

Question 6
Yes (it’s exp(iz)); No; No; Yes (it’s z · exp(z)). A Cauchy-Riemann computation settles them
all, good luck.

Question 7

cos z = cos(x+ iy) = cosx cos(iy)− sinx sin(iy) = cosx cosh(−y)

− sinx sinh(−y)/i = cosx cosh(−y)− i sinx sinh y,

similarly for sin. The absolute values now come out by summing the squares of real and imagi-
nary parts:

| cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y = cos2 x+ cos2 x(cosh2 y)− 1 + sin2 x sinh2 y =

cos2 x+ cos2 x sinh2 y + sin2 x sinh2 y = cos2 x+ sinh2 y,

and similarly for | sin z|2.

Question 8
Parametrize the lines as u+ it, fixed u, or t+ iv, fixed v, and use the formulas from the previous
exercise; for instance, the image of a vertical line cos(u + it) = cosu cosh t − i sinu sinh t is a
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centered, parametized half-hyperbola, satisfying the equation( x

cosu

)2
−
( y

sinu

)2
= 1.

Something special happens when sinu = 0, when you just sweep out the rays (−∞,−1] or [1,∞)
twice, from ∞ and back: the hyperbola gets flattened out to the two rays, and when cosu = 0,
when you sweep out the imaginary axis.

3


