Solutions 3

Question 1
The Jacobian matrix for the change from Cartesian to polar coordinates is
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and so we get from the 2-dimensional real chain rule
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The Cartesian CR equations
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become in polar coordinates (we switch the rows of J and change the sign of the bottom row)
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which we can solve to
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Question 2
Let as usual f = u + iv. We know that f’(z) = p + iq, where the Jacobian matrix of f is
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so f' = uy +iv,. But
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by CR, as needed. To check Cauchy-Riemann for f’ = du/dz + i0v/0z, use the CR equations

for u,v and the equality of the mixed partials to get
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Question 3

Horizontal lines require the imaginary part to be constant, and the curves where y/x is con-
stant are straight lines through the origin. Vertical lines have the real part x? + y? constant,
which describes circles centered at 0. So the polar coordinate grid is mapped to the Cartesian
coordinate grid.

Since du/dxr = 2z and Ov/dy = 1/x, CR fails for most x. The curve t — (x,y) = (¢,t) gets
transformed into the curve ¢ ~— (2¢2,1) and ¢ + (1,t) gets mapped to the horizontal parabola
t + (t> + 1,t). The original curves meet at (z,y) = (1,1) with angle 7/4 but the angle of the
second set of curves at their meeting point (2, 1) is not 7/4, as the first curve is horizontal and
the slope of the second velocity vector is 1/2.

For the last part, note that 2+ y? is not harmonic so it cannot be the real part of a holomorphic
function.

Question 4
The function is clearly real-differentiable. With u = e* cosy and v = e” siny, we have
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and Cauchy-Riemann implies complex-differentiability. The derivative is then du/dx+idv/0x =
e®(cosy + isiny) and agrees with the function itself. The last check follows from the addition
formulae for sin and cos.

Question 5

Note that 7/4 = 27 /8 and 7/2 = 47 /8, so by symmetry, arg (exp(mi/4) 4+ exp(mi/2)) = 3mi/8.
So tan(37/8) = Im/Re of that sum which is (1 + v/2/2) /(v2/2) =1+ V2.

For the second part, note that (2+14)(3+4) = 5+ 5¢ and so arg(2+1¢)+arg(3+1i) = arg(5+5i) =
7/4; but these arguments are tan—!(1/2) and tan~!(1/3), respectively.

Question 6
Yes (it’s exp(iz)); No; No; Yes (it’s z - exp(z)). A Cauchy-Riemann computation settles them
all, good luck.

Question 7

cos z = cos(x + iy) = cosx cos(iy) — sin x sin(iy) = cos x cosh(—y)

—sinx sinh(—y)/i = cos x cosh(—y) — isinx sinh y,

similarly for sin. The absolute values now come out by summing the squares of real and imagi-
nary parts:

2z cosh? y + sin® xsinh? y = cos® x + cos® z(cosh? y) — 1 + sin® zsinh? y =
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| cos z|* = cos

cos? z 4 cos? z sinh? y 4 sin® x sinh? y = cos? x + sinh? y,

and similarly for | sin z|2.

Question 8
Parametrize the lines as v+ it, fixed u, or ¢t +iv, fixed v, and use the formulas from the previous
exercise; for instance, the image of a vertical line cos(u + it) = cosucosht — isinusinht is a



centered, parametized half-hyperbola, satisfying the equation
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Something special happens when sin u = 0, when you just sweep out the rays (—oo, —1] or [1, c0)
twice, from oo and back: the hyperbola gets flattened out to the two rays, and when cosu = 0,
when you sweep out the imaginary axis.




