Solutions 2

Question 1

The map $z \mapsto a \cdot z$, for fixed $a=\cos \theta+\mathrm{i} \sin \theta$ is a rotation by angle θ. The map $z \mapsto z+b$ is a translation by the vector b. For the map $z \mapsto a z+b$, which is a composition of a rotation and a tranlation, we have two possibilities:

1. The angle $\theta \neq 0(\bmod 2 \pi \mathbf{Z})$. The composition is then a rotation about some center in the plane. To find the center c, we are looking for the complex number c fixed by the transformation, so that $c=a c+b$, which forces $c=b /(1-a)$. To verify our conclusion, note that the rotation about c y angle θ must be the map

$$
z \mapsto c+(z-c) \cdot(\cos \theta+\mathrm{i} \sin \theta)=\frac{b}{1-a}+z a-c a=\frac{b}{1-a}-\frac{b a}{1-a}+z a=b+z a
$$

2. The angle $\theta=0(\bmod 2 \pi \mathbf{Z})$. Then the map is a pure translation by b.

Question 2

We need de Moivre's formulae: $i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$, so the cube roots are (keeping in mind to add multiples of $2 \pi / 3$)

$$
\begin{aligned}
\cos \frac{\pi}{6}+i \sin \frac{\pi}{6} & =\frac{\sqrt{3}}{2}+\frac{i}{2} \\
\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6} & =-\frac{\sqrt{3}}{2}+\frac{i}{2} \\
\cos \frac{9 \pi}{6}+i \sin \frac{9 \pi}{6} & =-i
\end{aligned}
$$

For the second part, $1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$ so $(1+i)^{1000}=2^{500}$, because $1000 \cdot \frac{\pi}{4}$ is a multiple of 2π.

Question 3

The four complex roots of -1 are $\frac{1}{\sqrt{2}}(\pm 1 \pm i)$, with the four independent choices of signs. So

$$
x^{4}+1=\left(x+\frac{1+i}{\sqrt{2}}\right)\left(x+\frac{1-i}{\sqrt{2}}\right)\left(x-\frac{1+i}{\sqrt{2}}\right)\left(x-\frac{1-i}{\sqrt{2}}\right)
$$

which gives $\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right)$ after combining the first two and the last two factors.

Question 4

Check that $\bar{a} b+\bar{b} c+\bar{c} a$ changes by a real number a, b and c are simultaneously replaced by $a+z, b+z$ and $c+z$ (translation by the complex number z). Since the area is also invariant under translation, it suffices to verify the formula when $a=0$. (Translate all by $-a$). Note further that $\operatorname{Im}(\bar{b} c)$ is unchanged when b and c are both multiplied by the same complex number
α of unit modulus. This represents a rigid rotation, and it also leaves the area invariant. We choose α so that its argument is $-\arg b$, and then b becomes positive real.

The triangle now has the first vertex at 0 , the second at the real number b, the third at a complex number c. Its area is $\frac{1}{2}$ base \times height, which is half $b \times \operatorname{Im}(c)$. Hence the formula given is always valid.

Question 5

In coordinates x, y, we have

$$
f(z)=\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}}
$$

and as x, y and $x^{2}+y^{2}=r^{2}$ are continuously differentiable and the last one is non-zero in its domain it follows that f is continuously real-differentiable. We have

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}= & \frac{-x^{2}+y^{2}}{r^{4}},
\end{array} \frac{\partial u}{\partial y}=\frac{-2 x y}{r^{4}},
$$

confirming the Cauchy-Riemann equations.
To check differentiability from the complex definition, note that

$$
f(z)-f\left(z_{0}\right)=\frac{1}{z}-\frac{1}{z_{0}}=\frac{z_{0}-z}{z z_{0}},
$$

and dividing by $z-z_{0}$ gives

$$
\lim \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=-\lim \frac{1}{z z_{0}}=-\frac{1}{z_{0}^{2}}
$$

since $\frac{1}{z}$ has already been shown to be continuous.

Question 6

(a,b) Nowhere, Cauchy-Riemann fails everywhere (c) Check CR via $\partial / \partial \bar{z}: \partial f / \partial \bar{z}=z^{2}-1$ vanishes only at $z= \pm 1$ so f is complex-differentiable only at those points; (d) this is $1 / z$ so it's holomorphic away form 0 but not even continuous there.

Question 7

(a) From Cauchy-Riemann, all partials of the real and imaginary parts of f vanish, so both $\operatorname{Re} f$ and $\operatorname{Im} f$ are constant. (b) $v=0$ so the partials of u vanish everywhere so f is constant. (c) Here is a general argument: if f is holomorphic and f^{\prime} fails to vanish at some z_{0}, then the Jacobian matrix is invertible there and it follows that f maps a small neighbourhood of z_{0} onto a small neighbourhood of $f\left(z_{0}\right)$. In particular, if f^{\prime} is not identically zero, the image of f cannot be contained in any regular curve, such as $|w|=$ const (d) It follows that $f+\bar{f}$ and $i(f-\bar{f})$ are both holomorphic; but they are real-valued so they are both constant by a and it follows that f is constant.

Question 8

Good luck. (Ask me if you wish).

