Solutions 10

Question 1 The infinitesimal length scaling factor from P to z is $\frac{|z|^{2}+1}{2}$, that from z to w is $\left|\phi^{\prime}(z)\right|=|-\bar{v} z+\bar{u}|^{-2}$ (the conformal map ϕ rotates tangent vectors at z by $\arg \phi^{\prime}(z)$ and scales them by $\left|\phi^{\prime}(z)\right|$, as can be seen from its 2×2 matrix form), and that from w to Q is $\frac{2}{|w|^{2}+1}$. So the composite scaling is

$$
\begin{array}{r}
\frac{|z|^{2}+1}{2} \cdot \frac{1}{|-\bar{v} z+\bar{u}|^{2}} \cdot \frac{2}{|u z+v|^{2}|-\bar{v} z+\bar{u}|^{-2}+1}=\frac{|z|^{2}+1}{|u z+v|^{2}+|-\bar{v} z+\bar{u}|^{2}} \\
=\frac{|z|^{2}+1}{|u|^{2}|z|^{2}+|v|^{2}+u z \bar{v}+\bar{u} \bar{z} v+|v|^{2}|z|^{2}+|u|^{2}-\bar{v} z u-v \bar{z} \bar{u}}=1
\end{array}
$$

Question 2

$$
\frac{a z+b}{c z+d}=\frac{a}{d} z+\frac{b}{d}
$$

if $c=0$, whereas if $c \neq 0$ then

$$
\frac{a z+b}{c z+d}=\frac{a}{c} \frac{z+b c / a}{z+c d / a}=\frac{a}{c}+\frac{(b c-c d) / a}{z+c d / a}
$$

which is a atranslation, an inversion, a scaling and a translation again.

Question 3

Checking invariance under each of the maps in Q2 is straightforward.

Question 4

Shift the imaginary line to the right by $1, z \mapsto w=z+1$. Apply inversion $w \mapsto u=1 / w$; this takes the line $\operatorname{Re}(z)=1$ to the circle of radius $1 / 2$ centered at $1 / 2$. Subtract $1 / 2$ to center the circle, and scale it by 2 . The map we get is

$$
z \mapsto z+1 \mapsto \frac{1}{z+1} \mapsto \frac{1}{z+1}-\frac{1}{2} \mapsto \frac{2}{z+1}-1 .
$$

Luckily, we see that $1 \mapsto 0$. We get any other map by post-composing this with a Möbius map preserving the unit circle and fixing the origin. We know that the maps preserving the unit circle have the form $z \mapsto \frac{u z+v}{\bar{v} z+\bar{u}}$, with $|u|^{2}-|v|^{2}=1$; the condition $0 \mapsto 0$ is then $v=0$, so $|u|=1$ and the map $z \mapsto u z / \bar{u}$ is then a rotation; so the most general map as desired is

$$
z \mapsto \frac{2 e^{i \theta}}{z+1}-e^{i \theta}
$$

Question 5

The map is $z \mapsto \bar{z}^{-1}$. See Needham's book for a nice discussion of inversion about the unit circle: to find the image of $z \neq 0$, draw the ray from 0 to z and choose the point on it at distance $1 /|z|$
from the origin. 0 and ∞ get interchanged. Of course this helps you solve Q7 as well. The antipodal map is $z \mapsto-\bar{z}^{-1}$.

Question 6

The following observation will be used: a line meets a circle at right angles iff it passes through the center. (Easy by symmetry).
Call C_{1}, C_{2} the original circles. Let L be the line joining their centers. We will look for a circle C which meets and is orthogonal to all of C_{1}, C_{2} and L. (This circle will be centered on L.) Assuming we found C, we then send the two intersection points $C \cap L$ to 0 and ∞, respectively. This maps C and L to two perpendicular lines, and C_{1} and C_{2} to two circles that meet both of these lines at right angles. Hence, these circles are centered at 0 and we have found our map. To find C, choose a Möbius map sending one intersection point $C_{2} \cap L$ to ∞. Then, C_{2} becomes a line L_{2}, and L a line L^{\prime}. Now L_{2} and L^{\prime} are still perpendicular and the centre of the image C_{1}^{\prime} of C_{1} lies on L^{\prime}. We seek a circle C^{\prime} centered at $P=L_{2} \cap L^{\prime}$ (so that it is orthogonal to both) and orthogonal to C_{1}^{\prime}. But this is easy to find, provided that P lies outside C_{1}^{\prime} : draw the tangent lines from P to C_{1}^{\prime} and note that the points where they touch C_{1}^{\prime} must be on C^{\prime}; this gives you the radius.
Finally, map back your C^{\prime} to obtain the desired C.
When does the construction fail? Precisely when P is in the interior of C_{1}^{\prime}. That means that C_{1}^{\prime} separates P and ∞. But P and ∞ where the images of the two crossings $C_{2} \cap L$. They are separated by C_{1}^{\prime} iff C_{1} separates those two crossing points, which happens exactly when C_{1} and C_{2} meet.

Question 8

We write the map as a composition of two steps, $z \mapsto w=\frac{z+1}{z-1}$ followed by $w \mapsto w^{2}$.
Look at the first map. By the previous problem (or by checking), it preserves the real axis but sends the upper half-plane to the lower one. The imaginary axis goes to a circle orthogonal to the real axis and passing through the images of 0 and ∞, which are -1 and 1 ; so the imaginary axis maps to the unit circle. Finally, the right half-plane must go to one side of the unit circle, and as $1 \mapsto \infty$ this will be the outside.
Squaring sends the extended real axis to the non-negative half of the same, sends the unit circle to itself, and the outside of the unit circle to itself.

