Solutions 10

Question 1 The infinitesimal length scaling factor from P to z is $\frac{|z|^2+1}{2}$, that from z to w is $|\phi'(z)| = |-\bar{v}z + \bar{u}|^{-2}$ (the conformal map ϕ rotates tangent vectors at z by $\arg \phi'(z)$ and scales them by $|\phi'(z)|$, as can be seen from its 2×2 matrix form), and that from w to Q is $\frac{2}{|w|^2+1}$. So the composite scaling is

$$\frac{|z|^2 + 1}{2} \cdot \frac{1}{|-\bar{v}z + \bar{u}|^2} \cdot \frac{2}{|uz + v|^2| - \bar{v}z + \bar{u}|^{-2} + 1} = \frac{|z|^2 + 1}{|uz + v|^2 + |-\bar{v}z + \bar{u}|^2}$$
$$= \frac{|z|^2 + 1}{|u|^2|z|^2 + |v|^2 + uz\bar{v} + \bar{u}\bar{z}v + |v|^2|z|^2 + |u|^2 - \bar{v}zu - v\bar{z}\bar{u}} = 1$$

Question 2

$$\frac{az+b}{cz+d} = \frac{a}{d}z + \frac{b}{d}$$

if c = 0, whereas if $c \neq 0$ then

$$\frac{az+b}{cz+d} = \frac{a}{c} \frac{z+bc/a}{z+cd/a} = \frac{a}{c} + \frac{(bc-cd)/a}{z+cd/a}$$

which is a atranslation, an inversion, a scaling and a translation again.

Question 3

Checking invariance under each of the maps in Q2 is straightforward.

Question 4

Shift the imaginary line to the right by 1, $z \mapsto w = z + 1$. Apply inversion $w \mapsto u = 1/w$; this takes the line $\operatorname{Re}(z) = 1$ to the circle of radius 1/2 centered at 1/2. Subtract 1/2 to center the circle, and scale it by 2. The map we get is

$$z \mapsto z+1 \mapsto \frac{1}{z+1} \mapsto \frac{1}{z+1} - \frac{1}{2} \mapsto \frac{2}{z+1} - 1.$$

Luckily, we see that $1 \mapsto 0$. We get any other map by post-composing this with a Möbius map preserving the unit circle and fixing the origin. We know that the maps preserving the unit circle have the form $z \mapsto \frac{uz+v}{\bar{v}z+\bar{u}}$, with $|u|^2 - |v|^2 = 1$; the condition $0 \mapsto 0$ is then v = 0, so |u| = 1and the map $z \mapsto uz/\bar{u}$ is then a rotation; so the most general map as desired is

$$z \mapsto \frac{2e^{i\theta}}{z+1} - e^{i\theta}$$

Question 5

The map is $z \mapsto \overline{z}^{-1}$. See Needham's book for a nice discussion of *inversion about the unit circle*: to find the image of $z \neq 0$, draw the ray from 0 to z and choose the point on it at distance 1/|z|

from the origin. 0 and ∞ get interchanged. Of course this helps you solve Q7 as well. The antipodal map is $z \mapsto -\bar{z}^{-1}$.

Question 6

The following observation will be used: a line meets a circle at right angles iff it passes through the center. (Easy by symmetry).

Call C_1, C_2 the original circles. Let L be the line joining their centers. We will look for a circle C which meets and is orthogonal to all of C_1, C_2 and L. (This circle will be centered on L.) Assuming we found C, we then send the two intersection points $C \cap L$ to 0 and ∞ , respectively. This maps C and L to two perpendicular lines, and C_1 and C_2 to two circles that meet both of these lines at right angles. Hence, these circles are centered at 0 and we have found our map. To find C, choose a Möbius map sending one intersection point $C_2 \cap L$ to ∞ . Then, C_2 becomes a line L_2 and L_3 line L'. Now L_2 and L' are still perpendicular and the centre of the image

a line L_2 , and L a line L'. Now L_2 and L' are still perpendicular and the centre of the image C'_1 of C_1 lies on L'. We seek a circle C' centered at $P = L_2 \cap L'$ (so that it is orthogonal to both) and orthogonal to C'_1 . But this is easy to find, provided that P lies outside C'_1 : draw the tangent lines from P to C'_1 and note that the points where they touch C'_1 must be on C'; this gives you the radius.

Finally, map back your C' to obtain the desired C.

When does the construction fail? Precisely when P is in the *interior* of C'_1 . That means that C'_1 separates P and ∞ . But P and ∞ where the images of the two crossings $C_2 \cap L$. They are separated by C'_1 iff C_1 separates those two crossing points, which happens exactly when C_1 and C_2 meet.

Question 8

We write the map as a composition of two steps, $z \mapsto w = \frac{z+1}{z-1}$ followed by $w \mapsto w^2$.

Look at the first map. By the previous problem (or by checking), it preserves the real axis but sends the upper half-plane to the lower one. The imaginary axis goes to a circle orthogonal to the real axis and passing through the images of 0 and ∞ , which are -1 and 1; so the imaginary axis maps to the unit circle. Finally, the right half-plane must go to one side of the unit circle, and as $1 \mapsto \infty$ this will be the *outside*.

Squaring sends the extended real axis to the non-negative half of the same, sends the unit circle to itself, and the outside of the unit circle to itself.