Solutions 1

Question 1

The function is continuous and has limits $-\infty$ at $-\infty$ and $+\infty$ at $+\infty$ so there is always at least one real root. The derivative is $3x^2 - 3p$, positive when p < 0 (and also when p = 0 except possibly at one point) so the function is strictly increasing in that case and there is a unique real root. Note that p < 0 implies $q^2 > p^3$.

If p > 0 the function is strictly increasing up to $-\sqrt{p}$, has a local maximum there, decreases strictly until \sqrt{p} where it has a local minimum and is strictly increasing thereafter. We get 3 real roots precisely when the local maximum value is positive and the local minimum value negative. These values are $2p\sqrt{p} - 2q$ and $-2p\sqrt{p} - 2q$. Thus, for 3 solutions we must have $p\sqrt{p} > q$ and $p\sqrt{p} > -q$, which together are equivalent to $p^3 > q^2$.

Question 2

Note that $(r_+r_-)^3 = q^2 - \Delta = p^3$. We must have $r_+r_- = p$, because they are both real. Then,

$$(r_{+} + r_{-})^{3} - 3p(r_{+} + r_{-}) - 2q = r_{+}^{3} + r_{-}^{3} + 3r_{+}r_{-}(r_{+} + r_{-}) - 3p(r_{+} + r_{-}) - 2q$$

= 2q + 3p(r_{+} + r_{-}) - 3p(r_{+} + r_{-}) - 2q = 0

For $\omega r_+ + \omega^2 r_-$, the product is still p and we have similarly

$$(\omega r_{+} + \omega^{2} r_{-})^{3} - 3p(\omega r_{+} + \omega^{2} r_{-}) - 2q = r_{+}^{3} + r_{-}^{3} + 3r_{+}r_{-}(\omega r_{+} + \omega^{2} r_{-}) - 3p(\omega r_{+} + \omega^{2} r_{-}) - 2q = 0$$

= 2q + 3p(\omega r_{+} + \omega^{2} r_{-}) - 3p(\omega r_{+} + \omega^{2} r_{-}) - 2q = 0

When $\Delta < 0$, r_+ is complex. But choosing $r_- = \bar{r}_+$ gives again $r_+r_- = p$, because the cube is again p^3 and $r_+r_- = |r_+|^2$ is real. The calculation then runs exactly as above.

Question 3

Write
$$f(z) = f_n z^n + f_{n-1} z^{n-1} + \dots + f_1 z + f_0 = \sum_{k=0}^n f_k z^k$$
, with f_k real. Then,

$$\overline{f(z)} = \overline{f_n z^n + f_{n-1} z^{n-1} + \dots + f_1 z + f_0} = \overline{f_n} \cdot \overline{z^n} + \overline{f_{n-1}} \cdot \overline{z^{n-1}} + \dots + \overline{f_1} \cdot \overline{z} + \overline{f_0} = f_n \overline{z}^n + f_{n-1} \overline{z}^{n-1} + \dots + f_1 \overline{z} + f_0 = f(\overline{z})$$

because the coefficients f_k are real. So if $f(\alpha) = 0$ then $f(\bar{\alpha}) = \overline{f(\alpha)} = 0$.

Question 4

Let $z = \cos \theta + i \sin \theta$ and choose $\cos \frac{\theta}{2} = i \sin \frac{\theta}{2}$ for $z^{1/2}$. Then, multiplying numerator and denominator by $z^{-1/2}$ we get the identity

$$(1+\cos\theta+\cos 2\theta+\cdots+\cos n\theta)+i(\sin\theta+\cdots+\sin n\theta)=\frac{\cos(n+\frac{1}{2})\theta-\cos\frac{\theta}{2}+i\sin(n+\frac{1}{2})\theta+i\sin\frac{\theta}{2}}{2i\sin\frac{\theta}{2}}$$

and we get the advertised identities by equating real and imaginary parts.

Question 5

We have

$$1 + \omega + \dots + \omega^{n-1} = \frac{1 - \omega^n}{1 - \omega} = 0$$

by de Moivre's formula.

Question 6

Because $|\omega| = 1$, the parallelogram spanned by 1 and ω is a rhombus, so the diagonal $1 + \omega$ bisects the angle $\frac{2\pi}{n}$. Also, the modulus $|1 + \omega|$ is $2 \cos \frac{\pi}{n}$, because the second diagonal creates four congruent right-angled triangles with angles π/n . Therefore,

$$(1+\omega)^k = 2^k \cos^k \frac{\pi}{n} \left(\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n} \right)$$