Solutions 1

Question 1

The function is continuous and has limits $-\infty$ at $-\infty$ and $+\infty$ at $+\infty$ so there is always at least one real root. The derivative is $3 x^{2}-3 p$, positive when $p<0$ (and also when $p=0$ except possibly at one point) so the function is strictly increasing in that case and there is a unique real root. Note that $p<0$ implies $q^{2}>p^{3}$.

If $p>0$ the function is strictly increasing up to $-\sqrt{p}$, has a local maximum there, decreases strictly until \sqrt{p} where it has a local minimum and is strictly increasing thereafter. We get 3 real roots precisely when the local maximum value is positive and the local minimum value negative. These values are $2 p \sqrt{p}-2 q$ and $-2 p \sqrt{p}-2 q$. Thus, for 3 solutions we must have $p \sqrt{p}>q$ and $p \sqrt{p}>-q$, which together are equivalent to $p^{3}>q^{2}$.

Question 2

Note that $\left(r_{+} r_{-}\right)^{3}=q^{2}-\Delta=p^{3}$. We must have $r_{+} r_{-}=p$, because they are both real. Then,

$$
\begin{aligned}
\left(r_{+}+r_{-}\right)^{3}-3 p\left(r_{+}+r_{-}\right)-2 q & =r_{+}^{3}+r_{-}^{3}+3 r_{+} r_{-}\left(r_{+}+r_{-}\right)-3 p\left(r_{+}+r_{-}\right)-2 q \\
& =2 q+3 p\left(r_{+}+r_{-}\right)-3 p\left(r_{+}+r_{-}\right)-2 q=0
\end{aligned}
$$

For $\omega r_{+}+\omega^{2} r_{-}$, the product is still p and we have similarly

$$
\begin{aligned}
\left(\omega r_{+}+\omega^{2} r_{-}\right)^{3}-3 p\left(\omega r_{+}+\omega^{2} r_{-}\right)-2 q & =r_{+}^{3}+r_{-}^{3}+3 r_{+} r_{-}\left(\omega r_{+}+\omega^{2} r_{-}\right)-3 p\left(\omega r_{+}+\omega^{2} r_{-}\right)-2 q \\
& =2 q+3 p\left(\omega r_{+}+\omega^{2} r_{-}\right)-3 p\left(\omega r_{+}+\omega^{2} r_{-}\right)-2 q=0
\end{aligned}
$$

When $\Delta<0, r_{+}$is complex. But choosing $r_{-}=\bar{r}_{+}$gives again $r_{+} r_{-}=p$, because the cube is again p^{3} and $r_{+} r_{-}=\left|r_{+}\right|^{2}$ is real. The calculation then runs exactly as above.

Question 3

Write $f(z)=f_{n} z^{n}+f_{n-1} z^{n-1}+\cdots+f_{1} z+f_{0}=\sum_{k=0}^{n} f_{k} z^{k}$, with f_{k} real. Then,

$$
\begin{aligned}
\overline{f(z)}=\overline{f_{n} z^{n}+f_{n-1} z^{n-1}+\cdots+f_{1} z+f_{0}} & =\overline{f_{n}} \cdot \overline{z^{n}}+\overline{f_{n-1}} \cdot \overline{z^{n-1}}+\cdots+\overline{f_{1}} \cdot \bar{z}+\overline{f_{0}}= \\
& =f_{n} \bar{z}^{n}+f_{n-1} \bar{z}^{n-1}+\cdots+f_{1} \bar{z}+f_{0}=f(\bar{z})
\end{aligned}
$$

because the coefficients f_{k} are real. So if $f(\alpha)=0$ then $f(\bar{\alpha})=\overline{f(\alpha)}=0$.

Question 4

Let $z=\cos \theta+\mathrm{i} \sin \theta$ and choose $\cos \frac{\theta}{2}=\mathrm{i} \sin \frac{\theta}{2}$ for $z^{1 / 2}$. Then, multiplying numerator and denominator by $z^{-1 / 2}$ we get the identity
$(1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta)+\mathrm{i}(\sin \theta+\cdots+\sin n \theta)=\frac{\cos \left(n+\frac{1}{2}\right) \theta-\cos \frac{\theta}{2}+\mathrm{i} \sin \left(n+\frac{1}{2}\right) \theta+\mathrm{i} \sin \frac{\theta}{2}}{2 \mathrm{i} \sin \frac{\theta}{2}}$
and we get the advertised identities by equating real and imaginary parts.

Question 5

We have

$$
1+\omega+\cdots+\omega^{n-1}=\frac{1-\omega^{n}}{1-\omega}=0
$$

by de Moivre's formula.

Question 6

Because $|\omega|=1$, the parallelogram spanned by 1 and ω is a rhombus, so the diagonal $1+\omega$ bisects the angle $\frac{2 \pi}{n}$. Also, the modulus $|1+\omega|$ is $2 \cos \frac{\pi}{n}$, because the second diagonal creates four congruent right-angled triangles with angles π / n. Therefore,

$$
(1+\omega)^{k}=2^{k} \cos ^{k} \frac{\pi}{n}\left(\cos \frac{k \pi}{n}+\mathrm{i} \sin \frac{k \pi}{n}\right)
$$

