Question 1

(a) The denominator vanishes at $z=-1$ with a double zero. The numerator is holomorphic and does not vanish at $z=-1$. so we have a double pole at $z=-1$ with residue $-e^{-1}$, the derivative of the numerator at $z=-1$.
(b) Holomorphy is clear everywhere except at $z=0$. There, the numerator vanishes with a triple zero, the first term in the Taylor series being $z^{3} / 6$; so we have a simple pole with residue $1 / 6$.
(c) The denominator vanishes with a double zero at all integer multiples of $2 \pi i$. Of these, the numerator vanishes at $z=0$ only. So we have a simple pole at the origin with resudue 1 , and double poles at $2 \pi i n, n \in \mathbb{Z} \backslash\{0\}$. The residues are obtained from the starts of the Taylor expansions near $z=2 \pi n i$, in terms of $w=(z-2 \pi n i)$

$$
\begin{aligned}
\frac{\sin z}{\left(e^{z}-1\right)^{2}} & =\frac{\sin (2 \pi n i)+\cos (2 \pi n i) w+O\left(w^{2}\right)}{\left(w+w^{2} / 2+O\left(w^{3}\right)\right)^{2}} \\
& =\frac{1}{w^{2}}\left(\sin (2 \pi n i)+\cos (2 \pi n i) w+O\left(w^{2}\right)\right)\left(1-w+O\left(w^{2}\right)\right) \\
& =\frac{\sin (2 \pi n i)}{w^{2}}+\frac{1}{w}(\cos (2 \pi n i)-\sin (2 \pi n i))+O(1)
\end{aligned}
$$

so the residue is $\cos (2 \pi n i)-\sin (2 \pi n i)=\cosh (2 \pi n)-i \sinh (2 \pi n)$

Question 3

This is half of the integral on the real line, for which we can use a contour along the upper half-disk of radius R and let $R \rightarrow \infty$. The integrand will be $z e^{i a z} /\left(z^{4}+4\right)$, which decays roughly as R^{-3} on the upper half-circle, so that integral decays like R^{-2}, leaving only the real line contribution.

There are two poles enclosed by the contour, at $z= \pm 1+i$, with residues $e^{i a-a} / 8 i$ and $-e^{-i a-a} / 8 i$, adding up to $\frac{1}{4} e^{-a} \sin a$. So the original real integral, half the imaginary part of the complex integral, is π times that, which is the answer given.

Question 4

Double the integral to 2π and convert to a complex integral on the unit circle C,

$$
(-i) \cdot \oint_{C} \frac{z+z^{-1}}{4+z+z^{-1}} z^{-1} d z
$$

The integrand, $\frac{z^{2}+1}{z^{3}+4 z^{2}+z}$, has simple poles at $z=0$ and $-2+\sqrt{3}$ inside the unit circle (the other pole is outside). The residues are 1 and $-2 / \sqrt{3}$, so the integral is

$$
(-i) \cdot \pi i \cdot(1-2 / \sqrt{3})=\pi(1-2 / \sqrt{3})
$$

Question 5

See Schaum, §5.2

Question 1

(a) There is a removable singularity at $z=0$, as can be seen from the Taylor expansion of $\sin z$ by cancelling a factor of z. There are further singularitues at $z=\pi n, n \in \mathbb{Z} \backslash\{0\}$, where $\sin z$ has simple zeroes. The residues are $(-1)^{n} \pi n$, the limit as $z \rightarrow \pi n$ of $(z-\pi n) \frac{z}{\sin z}$.
(b) The isolated singularities are at $z=1 / 2 \pi i n$. There is a non-isolated singularity at $z=0$. The residue at $1 / 2 \pi i n$ is found by setting $z=1 / 2 \pi i n+w$, in which case

$$
\begin{array}{r}
\exp (1 / z)=\exp \left(\frac{1}{1 / 2 \pi i n+w}\right)=\exp \left(\frac{2 \pi i n}{1+2 \pi i n w}\right) \\
=\exp \left(2 \pi i n+4 \pi^{2} n^{2} w+O\left(w^{2}\right)\right)=1+4 \pi^{2} n^{2} w+O\left(w^{2}\right)
\end{array}
$$

so the residue is $1 / 4 \pi^{2} n^{2}$.

Question 3

With $z=e^{i \theta}, d \theta=(-i) d z / z$ and the integral becomes one iver the unit circle C

$$
\frac{-i}{2} \oint_{C} \frac{2+z+z^{-1}}{13 z+6 i z^{2}-6 i} d z=\oint_{C} \frac{-z^{2}-2 z-1}{2 z\left(6 z^{2}-13 i z-6\right)} d z
$$

Now $6 z^{2}-13 i z-6=(2 z-3 i)(3 z-2 i)$ so the zeroes of the denominaror are at $0,2 i / 3$ and $3 i / 2$, of which only the first two lies inside C. The residue at 0 is $\frac{1}{12}$, at $2 i / 3$ it is $-\frac{1}{12}-\frac{i}{5}$, so the integral is $2 \pi / 5$.

Question 4

We integrate $z^{2} /\left(z^{4}+4\right)^{2}$ around a quarter-disk of radius R in the first quadrant. The circle integral vanishes in the limit, since the integrand decays roughly like R^{-6}. The imaginary axis integral, where $z=i y$ ranging from R to 0 , equals $i \cdot \int_{0}^{R} y^{2} \cdot\left(y^{4}+4\right)^{-2} d y$. There is one singularity in the quadrant, a double pole at $z=1+i$. So our answer for the integral is $\frac{2 \pi i}{1+i} \rho$, with the residue ρ at $1+i$.

To compute ρ, we use the derivative formula for the residue:

$$
\begin{aligned}
\frac{d}{d z} & \left(\frac{z^{2}}{\left(z^{2}+2 i\right)^{2}(z+1+i)^{2}}\right)= \\
& =\frac{2 z}{\left(z^{2}+2 i\right)^{2}(z+1+i)^{2}}-\frac{4 z^{3}}{\left(z^{2}+2 i\right)^{3}(z+1+i)^{2}}-\frac{2 z^{2}}{\left(z^{2}+2 i\right)^{2}(z+1+i)^{3}}
\end{aligned}
$$

Evaluated at $z=1+i$,

$$
\frac{i-1}{64}+\frac{1+i}{64 i}+\frac{1}{64(1+i)}=\frac{1-i}{128}
$$

so the value of the integral is $\pi / 64$.

