
Question 1
(a) The denominator vanishes at z = −1 with a double zero. The numerator
is holomorphic and does not vanish at z = −1. so we have a double pole at
z = −1 with residue −e−1, the derivative of the numerator at z = −1.

(b) Holomorphy is clear everywhere except at z = 0. There, the numerator
vanishes with a triple zero, the first term in the Taylor series being z3/6; so we
have a simple pole with residue 1/6.

(c) The denominator vanishes with a double zero at all integer multiples of 2πi.
Of these, the numerator vanishes at z = 0 only. So we have a simple pole at
the origin with resudue 1, and double poles at 2πin, n ∈ Z \ {0}. The residues
are obtained from the starts of the Taylor expansions near z = 2πni, in terms
of w = (z − 2πni)

sin z

(ez − 1)2
=

sin(2πni) + cos(2πni)w +O(w2)

(w + w2/2 +O(w3))2

=
1

w2
(sin(2πni) + cos(2πni)w +O(w2))(1− w +O(w2))

=
sin(2πni)

w2
+

1

w
(cos(2πni)− sin(2πni)) +O(1)

so the residue is cos(2πni)− sin(2πni) = cosh(2πn)− i sinh(2πn)

Question 3
This is half of the integral on the real line, for which we can use a contour
along the upper half-disk of radius R and let R → ∞. The integrand will be
zeiaz/(z4 + 4), which decays roughly as R−3 on the upper half-circle, so that
integral decays like R−2, leaving only the real line contribution.

There are two poles enclosed by the contour, at z = ±1 + i, with residues
eia−a/8i and −e−ia−a/8i, adding up to 1

4e
−a sin a. So the original real integral,

half the imaginary part of the complex integral, is π times that, which is the
answer given.

Question 4
Double the integral to 2π and convert to a complex integral on the unit circle
C,

(−i) ·
∮
C

z + z−1

4 + z + z−1
z−1dz

The integrand, z2+1
z3+4z2+z , has simple poles at z = 0 and −2 +

√
3 inside the unit

circle (the other pole is outside). The residues are 1 and −2/
√

3, so the integral
is

(−i) · πi · (1− 2/
√

3) = π(1− 2/
√

3)

Question 5
See Schaum, §5.2
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Question 1
(a) There is a removable singularity at z = 0, as can be seen from the Taylor
expansion of sin z by cancelling a factor of z. There are further singularitues at
z = πn, n ∈ Z \ {0}, where sin z has simple zeroes. The residues are (−1)nπn,
the limit as z → πn of (z − πn) z

sin z .

(b) The isolated singularities are at z = 1/2πin. There is a non-isolated singu-
larity at z = 0. The residue at 1/2πin is found by setting z = 1/2πin + w, in
which case

exp(1/z) = exp

(
1

1/2πin+ w

)
= exp

(
2πin

1 + 2πinw

)
= exp

(
2πin+ 4π2n2w +O(w2)

)
= 1 + 4π2n2w +O(w2)

so the residue is 1/4π2n2.

Question 3
With z = eiθ, dθ = (−i)dz/z and the integral becomes one iver the unit circle
C

−i
2

∮
C

2 + z + z−1

13z + 6iz2 − 6i
dz =

∮
C

−z2 − 2z − 1

2z(6z2 − 13iz − 6)
dz

Now 6z2 − 13iz − 6 = (2z − 3i)(3z − 2i) so the zeroes of the denominaror are
at 0, 2i/3 and 3i/2, of which only the first two lies inside C. The residue at 0 is
1
12 , at 2i/3 it is − 1

12 −
i
5 , so the integral is 2π/5.

Question 4
We integrate z2/(z4+4)2 around a quarter-disk of radius R in the first quadrant.
The circle integral vanishes in the limit, since the integrand decays roughly like
R−6. The imaginary axis integral, where z = iy ranging from R to 0, equals

i ·
∫ R
0
y2 · (y4 + 4)−2dy. There is one singularity in the quadrant, a double pole

at z = 1 + i. So our answer for the integral is 2πi
1+iρ, with the residue ρ at 1 + i.

To compute ρ, we use the derivative formula for the residue:

d

dz

(
z2

(z2 + 2i)2(z + 1 + i)2

)
=

=
2z

(z2 + 2i)2(z + 1 + i)2
− 4z3

(z2 + 2i)3(z + 1 + i)2
− 2z2

(z2 + 2i)2(z + 1 + i)3
.

Evaluated at z = 1 + i,

i− 1

64
+

1 + i

64i
+

1

64(1 + i)
=

1− i
128

so the value of the integral is π/64.
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