Math185 - Midterm 2

25 points, 75 minutes. Closed book, no notes.

Question 1, 4 pts

For the following functions, locate the singularities, determine their type and find the residue if appropriate:

$$
\text { (a) } \frac{e^{z}+1}{e^{z}-1} \quad \text { (b) } \sin ^{2}(1 / z)
$$

Question 2, 5 pts

For the function $f(z)=\frac{1}{z\left(z^{2}-1\right)}$, find two Laurent expansions centered at $z=0$ and converging respectively in the annuli $0<|z|<1$ and $|z|>1$.
Determine the integral over the circle C of radius 17 centered at $z=0$,

$$
\oint_{C} \frac{d z}{z^{4}\left(z^{2}-1\right)}
$$

Question 3, 5 pts

Show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{5-3 \cos \theta}=\frac{\pi}{2}
$$

Question 4, 6 pts

By using a keyhole contour and the logarithm as an auxiliary function, or otherwise, show that

$$
\int_{0}^{\infty} \frac{x d x}{(x+1)\left(x^{2}+x+1\right)}=\frac{\pi}{3 \sqrt{3}}
$$

Note: $\exp (\pm 2 \pi i / 3)=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

Question 5, 5pts

Let $f(z)$ be a holomorphic function in a disk of radius $R+\varepsilon$ centered at $z=0(R, \varepsilon>0)$. Using Cauchy's formula, prove that f has a Taylor series expansion centered at $z=0$ which converges absolutely in the disk of radius R.

