Math 185, Fall 2014: Third exam, 11/6

25 points, 75 minutes
You must justify your answers.

Question 1 (3+3)

Locate and classify all singularities for the following functions, and find the residues at the isolated singularities:

$$
\begin{array}{ll}
\text { (a) } \frac{z}{\sin z} & \text { (b) } \frac{1}{e^{1 / z}-1}
\end{array}
$$

Caution. One of these functions also has a non-isolated singularity; do not attempt to compute a residue there.
It may help your residue calculation at a singular point p to write $z=p+w$, and work with w.

Question 2 (5)

Write down a proof of the Fundamental Theorem of Algebra that uses complex methods.
If you use a theorem from complex analysis, such as the Maximum Modulus Theorem or Liouville's theorem, include in outline an argument for it, starting from Cauuchy's Integral Formulas.

Question 3 (7)
Evaluate

$$
\int_{0}^{2 \pi} \frac{1+\cos \theta}{13-12 \sin \theta} d \theta
$$

Question 4 (7)

By a residue calculation of a contour integral along a carefully chosen sector, determine that

$$
\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{4}+4\right)^{2}}=\frac{\pi}{64}
$$

Remark: More than once choice of sector will work, but there is a best choice

