Math185 - Midterm 2

Thursday, November 9, 2006, 9:40-11:00
This is a closed book exam.
Please write clearly and explain your reasoning, unless instructed otherwise

Question 1, 6 pts

Determine the nature of the singularities and find the residues there for the following functions:
(a) $\frac{(z-1) e^{z}}{(z+1)^{2}}$
(b) $\frac{z-\sin z}{z^{4}}$
(c) $\frac{\sin z}{\left(e^{z}-1\right)^{2}}$

Question 2, 8 pts

True or false? Circle the correct answer; no reason necessary.
$\mathrm{T} \quad \mathrm{F} \quad$ The function \sqrt{z} has an isolated singularity at $z=0$

T F A harmonic function on \mathbb{C} that is bounded below must be constant
$\mathrm{T} \quad \mathrm{F} \quad$ If f is a holomorphic function on \mathbb{C} and γ, Γ are two piecewise regular curves with the same endpoints, then $\int_{\gamma} f(z) d z=\int_{\Gamma} f(z) d z$
$\mathrm{T} \quad \mathrm{F} \quad$ The residue of $f(z)=\sin (z) / z$ at $z=0$ is zero

T F If the holomorphic function f is never zero in a domain D, then we can define a single-valued branch of $\log f$ without any branch cuts

T F If the function f defined on \mathbb{C}^{*} is holomorphic and bounded, then it is constant
$\mathrm{T} \quad \mathrm{F} \quad$ If f is holomorphic at z_{0} and g has a pole at z_{0}, then $f+g$ has a pole at z_{0}

T F The function $1 / \sin ^{2} z$ has a holomorphic anti-derivative in $\mathbb{C} \backslash \pi \mathbb{Z}$

T $\quad \mathrm{F} \quad$ If f_{1} and f_{2} both have convergent Taylor expansion around z_{0} with radii of convergence R_{1} and R_{2}, then the radius of convergence of the Taylor series for $f_{1}+f_{2}$ is $\max \left(R_{1}, R_{2}\right)$.

T F Every holomorphic function defined on the outside of the unit disk has an antiderivative there
$\mathrm{T} \quad \mathrm{F} \quad$ If f has a pole at z_{0} and g has an essential isolated singularity there, then $f \cdot g$ has an essential singularity at z_{0}

T F Every holomorphic function has a convergent Taylor expansion at each point in its domain

Show that, for $a>0$,

$$
\int_{0}^{\infty} \frac{x \sin a x}{x^{4}+4} d x=\frac{\pi}{4} e^{-a} \sin a .
$$

Note: You must justify your calculations and estimates.

Question 4, 4 pts

Using residues, find the value of

$$
\int_{0}^{\pi} \frac{\cos \theta d \theta}{2+\cos \theta}
$$

Question 5, 3 pts

Prove the following Mean value theorem: If f is holomorphic on and within the circle C centered at z_{0}, the value of f at z_{0} is the average of its values on C. Proceed as follows:
(a) By expressing the average as an integral, rephrase the statement as a formula:

$$
f\left(z_{0}\right)=\int_{0}^{2 \pi} ? ? ?
$$

(b) Deduce the formula in (a) from Cauchy's formula.

Question 6, 2 pts, optional extra credit

Find a system of branch cuts that allows a single-valued choice of branch for the function $\sqrt[3]{\sin z \cos ^{2} z}$ and which does not involve cuts going out to ∞.

