Math185 – Midterm 2

Thursday, November 9, 2006, 9:40-11:00 This is a closed book exam. Please write clearly and explain your reasoning, unless instructed otherwise

Question 1, 6 pts

Determine the nature of the singularities and find the residues there for the following functions:

(a)
$$\frac{(z-1)e^z}{(z+1)^2}$$
 (b) $\frac{z-\sin z}{z^4}$ (c) $\frac{\sin z}{(e^z-1)^2}$

Question 2, 8 pts

True or false? Circle the correct answer; no reason necessary.

- T F The function \sqrt{z} has an isolated singularity at z = 0
- T F A harmonic function on $\mathbb C$ that is bounded below must be constant
- T F If f is a holomorphic function on \mathbb{C} and γ , Γ are two piecewise regular curves with the same endpoints, then $\int_{\gamma} f(z)dz = \int_{\Gamma} f(z)dz$
- T F The residue of $f(z) = \sin(z)/z$ at z = 0 is zero
- T F If the holomorphic function f is never zero in a domain D, then we can define a single-valued branch of $\log f$ without any branch cuts
- T F If the function f defined on \mathbb{C}^* is holomorphic and bounded, then it is constant
- T F If f is holomorphic at z_0 and g has a pole at z_0 , then f + g has a pole at z_0
- T F The function $1/\sin^2 z$ has a holomorphic anti-derivative in $\mathbb{C} \setminus \pi\mathbb{Z}$
- T F If f_1 and f_2 both have convergent Taylor expansion around z_0 with radii of convergence R_1 and R_2 , then the radius of convergence of the Taylor series for $f_1 + f_2$ is $\max(R_1, R_2)$.
- T F Every holomorphic function defined on the outside of the unit disk has an antiderivative there

- T F If f has a pole at z_0 and g has an essential isolated singularity there, then $f \cdot g$ has an essential singularity at z_0
- T F Every holomorphic function has a convergent Taylor expansion at each point in its domain

Show that, for a > 0,

$$\int_0^\infty \frac{x \sin ax}{x^4 + 4} dx = \frac{\pi}{4} e^{-a} \sin a.$$

Note: You must justify your calculations and estimates.

Question 4, 4 pts

Using residues, find the value of

$$\int_0^\pi \frac{\cos\theta \,d\theta}{2+\cos\theta}.$$

Question 5, 3 pts

Prove the following *Mean value theorem*: If f is holomorphic on and within the circle C centered at z_0 , the value of f at z_0 is the average of its values on C. Proceed as follows: (a) By expressing the average as an integral, rephrase the statement as a formula:

$$f(z_0) = \int_0^{2\pi} ???$$

(b) Deduce the formula in (a) from Cauchy's formula.

Question 6, 2 pts, optional extra credit

Find a system of branch cuts that allows a single-valued choice of branch for the function $\sqrt[3]{\sin z \cos^2 z}$ and which does *not* involve cuts going out to ∞ .