Math185 - Midterm 1 solutions

Question 1, 6 pts

(a) $i=\exp \frac{\pi i}{2}$, so the values of $i^{2 / 3}$ are $\exp \frac{\pi i}{3}, \exp \left(\frac{\pi i}{3}+\frac{2 \pi i}{3}\right)$ and $\exp \left(\frac{\pi i}{3}-\frac{2 \pi i}{3}\right)$; specifically they are the cube roots of (-1),

$$
\frac{1}{2}+i \frac{\sqrt{3}}{2},-1, \frac{1}{2}-i \frac{\sqrt{3}}{2} .
$$

(b) $\log i=\frac{\pi i}{2}+2 n \pi i, n \in \mathbf{Z}$, so $i \log i=-\frac{\pi}{2}-2 n \pi, n \in \mathbf{Z}$ and so $\sin (i \cdot \log i)=-1$.
(c) $\exp \left(\frac{1}{2} \log i\right)=\exp \left(\frac{\pi i}{4}+n \pi i\right)= \pm(1+i) / \sqrt{2}$, the two square roots of i.

Question 2, 6 pts
f is complex-differentiable at z_{0} iff

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists (and is finite), in which case the value of the limit is the complex derivative $f^{\prime}\left(z_{0}\right)$. If $f(z)=\bar{z}$, then $\frac{\bar{z}-z_{0}}{z-z_{0}}$ has modulus 1 for any $z \neq z_{0}$; but the argument is twice the argument of $\bar{z}-\bar{z}_{0}$, so there is no limit as $z \rightarrow z_{0}$. (For instance, different directions of approach would give different limits.)
For the square root, we start by noting the identity $z-z_{0}=\left(\sqrt{z}-\sqrt{z_{0}}\right)\left(\sqrt{z}+\sqrt{z_{0}}\right)$, valid for any choices of $\sqrt{z}, \sqrt{z_{0}}$. Therefore,

$$
\frac{\sqrt{z}-\sqrt{z_{0}}}{z-z_{0}}=\frac{1}{\sqrt{z}+\sqrt{z_{0}}} \rightarrow \frac{1}{2 \sqrt{z_{0}}}, \text { as } z \rightarrow z_{0} .
$$

Question 3, 7 pts

(a) Absolute and locally uniform, as it is dominated by $|z|^{2} \cdot \sum 1 / n^{2}$: so we can get a uniform bound on the error, as long as $|z|$ is bounded. It is not uniform in z, however, because for any fixed n we can get the nth term $z^{2} /\left(n^{2}+|z|^{2}\right)$ to be close to 1 by making z large: so choosing $\varepsilon=\frac{1}{2}$ say, there is no n for which the errors above n are less than ε for all values of z.
(b) The numerator has exponential behavior in $n:(\exp z)^{n}$. So if $|\exp z| \leq 1$, the series is dominated by $\sum 1 / n^{2}$ and converges absolutely and uniformly. For $|\exp z|>1$, the general term increases without bound so the series diverges. The condition $|\exp z| \leq 1$ is equivalent to $\operatorname{Re}(z) \leq 0$.
(c) When z is real, $|\sin (n z)| \leq 1$ so the series converges absolutely and uniformly on the real axis.

Off the axis, however, $\sin n z=\sin n x \cdot \cosh n y+i \cos n x \cdot \sinh n y$, so

$$
\begin{aligned}
|\sin (n z)|^{2} & =\sin ^{2} n x \cdot \cosh ^{2} n y+\cos ^{2} n x \cdot \sinh ^{2} n y= \\
& =\sin ^{2} n x+\sin ^{2} n x \cdot \sinh ^{2} n y+\cos ^{2} n x \cdot \sinh ^{2} n y=\sin ^{2} n x+\sinh ^{2} n y \geq \sinh ^{2} n y
\end{aligned}
$$

and the latter grows exponentially with n as soon as $y \neq 0$.

Question 4, 6pts

The answer is always $2 i \times$ (area enclosed by γ).

