Math185 - Midterm 1

4 questions, 25 points, 75 minutes. Closed book, no notes. Justify your answers.

Question 1, 6 pts

Work out the possible complex values of the expressions below as explicitly as you can:

$$
\text { (a) } i^{2 / 3} \quad \text { (b) } \sin (i \cdot \log i) \quad(c) \exp \left(\frac{1}{2} \log i\right)
$$

Question 2, 6 pts

Write down what it means for a function $f: U \mapsto \mathbb{C}$, defined on an open subset $U \subset \mathbb{C}$, to be complex-differentiable at a point $z_{0} \in U$, and define its complex derivative $f^{\prime}\left(z_{0}\right)$.
Using the definition, show that the function $g(z)=\bar{z}$ is not complex-differentiable anywhere in \mathbb{C}. Also from the definition, show that the function \sqrt{z}, defined for $z \in \mathbf{C} \backslash \mathbf{R}_{\leq 0}$ as the square root with positive real part, is complex-differentiable everywhere in its domain, with derivative $\frac{1}{2 \sqrt{z}}$.

Question 3, 7 pts

Discuss the convergence of the series (absolute, uniform, or locally uniform)
(a) $\sum_{n=1}^{\infty} \frac{z^{2}}{n^{2}+|z|^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{e^{n z}}{n^{2}+1}$
(c) $\sum_{n=1}^{\infty} \frac{\sin n z}{n^{2}+2}$

Note: You may assume the convergence of the series $\sum 1 / n^{2}$. Careful with the third one.

Question 4, 6pts

Find the complex integrals $\int_{\gamma} f(z) d z$ of the function $f(z)=\bar{z}$ along the following closed paths γ :

1. The circle of radius R centered at the origin, oriented counter-clockwise
2. The rectangle with vertices at $0, a, a+b i, b i\left(a, b \in \mathbf{R}_{+}\right)$, in this order

You should now be able to guess the value of the integral along a closed curve bounding a more general region R (if not, then you made a mistake).

