## Math185 - Homework 9

Due on MONDAY, April 2
Question 1 (Schaum, 7.55) Find the residue of $e^{i z} /\left(z^{2}+1\right)^{5}$ at $z=i$ and use it to evaluate $\int_{0}^{\infty} \frac{\cos x d x}{\left(x^{2}+1\right)^{5}}$.

Question 2 (Schaum, 7.60) Prove that $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}$.
Hint: Use a trigonometric identity to relate this to $\left(e^{2 i x}-1\right) / x^{2}$.
Question 3 (Schaum, 7.90) Using the contour integral on a rectangle with vertices $-R, R, R+$ $\pi i,-R+\pi i$, prove that

$$
\int_{0}^{\infty} \frac{\cos p x}{\cosh x} d x=\frac{\pi}{2 \cosh (p \pi / 2)}
$$

Question 4 (Schaum 7.100) Using a rectangular contour of height $i$ and either the "notching" argument or half-residues, check that

$$
\int_{0}^{\infty} \frac{x d x}{\sinh (\pi x)}=\frac{1}{4}
$$

Question 5 Show using residues that

$$
\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}
$$

Question 6 Show by contour integration that for real $-1<\alpha<3$,

$$
\int_{0}^{\infty} \frac{x^{\alpha}}{\left(x^{2}+1\right)^{2}} d x=\frac{(1-\alpha) \pi}{4 \cos (\alpha \pi / 2)}
$$

explaining the appropriate interpretation of the right-hand side when $\alpha=1$.
Hint: Use a semi-circular or a keyhole contour.
Question 7 By using a keyhole contour and the logarithm as an auxiliary function, determine

$$
\int_{0}^{\infty} \frac{x d x}{x^{3}+x^{2}+x+1}
$$

Question 8 (Sarason) Show that for $0<|a|<1$ and a positive integer $n$, the equation $(z-1)^{n} e^{z}=$ $a$ has exactly $n$ distinct solutions in the half-plane $\operatorname{Re}(z)>0$. (Use Rouché's theorem.)

Question $9^{*}$, (Schaum, 7.104) Verify the following formula for the Cauchy principal value integral, for $0<p<1$ :

$$
\mathrm{PV} \int_{0}^{\infty} \frac{x^{-p} d x}{x-1}=\pi \cot (p \pi)
$$

(Use a keyhole contour.)
Question 10* (Schaum, 7.95) Using the contour bounded by an (infinitely) large circle plus a cut along the interval $[0,1]$, together with two vanishingly small circles around 0 and 1 (Schaum, Fig. 7.18), prove that

$$
\int_{0}^{1} \frac{d x}{\sqrt[3]{x^{2}-x^{3}}}=\frac{2 \pi}{\sqrt{3}}
$$

