Math185 - Homework 8

Due in class on Wednesday, March 21

Question 1 Schaum, 5.35
Question 2 Schaum, 5.39
Question 3 Schaum, 5.88
Question 4 Prove that if a holomorphic function f has an isolated singularity at 0 , then the principal part of its Laurent expansion converges everywhere on $\mathbb{C} \backslash\{0\}$.

Question 5 Give a formula for the residue at 0 of the function $\sin \left(z+z^{-1}\right)$.
Question 6 Find the Laurent series of the function $f(z)=\left(z^{2}-1\right) \sin \left(1 / z^{2}\right)$ in the domain $0<|z|<\infty$.

Question 7 By choosing two different annuli, both centered at 0 , in which the function below is holomorphic, find two different Laurent expansions for it in powers of z. Describe their regions of convergence.

$$
f(z)=\frac{1}{z^{2}(1-z)}
$$

Question 8 Schaum, 6.92
Question 9 Find the residues of the following functions at each of their isolated singularities:

$$
\text { (a) } \frac{z^{p}}{1-z^{q}} \quad\left(p, q \in \mathbb{Z}_{>0}\right) \quad \text { (b) } \frac{z^{5}}{\left(z^{2}-1\right)^{2}} \quad \text { (c) } \frac{\cos z}{1+z+z^{2}}
$$

Question 10 Show that if $f(z)$ is a holomorphic function on \mathbb{C}, except possibly for finitely many poles, and $|f(z)|<$ (const.) $/|z|^{2}$ for large z, then

$$
\sum_{n=-\infty}^{\infty} f(n)=-\pi \sum_{\text {poles of } f(z)} \operatorname{Res}[f(z) \cot (\pi z)]
$$

where it is understood that if f has a pole at some integer n, then the value $f(n)$ is excluded from the sum on the left (it contributes to the right instead).
Applying this to the function $f(z)=1 /(z-\pi w)^{2}$, for a fixed complex number w, deduce a formula of Euler's

$$
\frac{1}{\sin ^{2} w}=\sum_{n \in \mathbb{Z}} \frac{1}{(w-n \pi)^{2}} .
$$

Hint: Use the residue formula for $f(z) \cot (\pi z)$ for the square centered at 0 , with sides parallel to the x, y-axes and crossing these at $\pm(N+1 / 2)$ and $\pm(N+1 / 2) i$, respectively. Estimate the contour integral and show that it vanishes as $N \rightarrow \infty$. If you are stuck, see Needham, 9.III. 5 for help.

Question 11* Starting from the series expansion of Q8,

$$
\begin{equation*}
\frac{1}{\sin ^{2} z}=\sum_{n=-\infty}^{\infty} \frac{1}{(z-n \pi)^{2}}, \tag{*}
\end{equation*}
$$

integrate both sides twice and then exponentiate to derive another formula of Euler's,

$$
\sin z=z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{\pi^{2} n^{2}}\right)
$$

Caution: In the product, the terms for n and $-n$ have been grouped together in order to get convergence. You need to do this with the series at the first integration, otherwise the series of integrals diverges.

