Math185 - Homework 4

Due in class on Wednesday, February 14

Question 1

Let u be a real-valued C^{2} function on an open set $D \subset \mathbb{R}^{2}$.
Show that the function $g:=\partial u / \partial x-i \cdot \partial u / \partial y$ is a holomorphic function of $z=x+i y$ in D if and only if u is harmonic.
Further, if u is the real part of the holomorphic function f, show that $g=d f / d z$.
Remark: In conclusion, the harmonic conjugate v of u is the imaginary part of the complex antiderivative of g. Soon, we will learn how to find the complex anti-derivative using line integrals.

Question 2

Find the harmonic conjugates of the following functions:

$$
\text { (a) } x^{3}-3 x y^{2} ; \quad \text { (b) } \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

Question 3

Investigate the (a) absolute and (b) uniform convergence of the series

$$
\frac{z}{3}+\frac{z(3-z)}{3^{2}}+\frac{z(3-z)^{2}}{3^{3}}+\frac{z(3-z)^{3}}{3^{4}}+\ldots
$$

Question 4

For which real values of x do the following power series converge? (You also need to check the borderline cases which the ratio test fails to settle.)
(a) $\sum_{n \geq 0} \frac{x^{n}}{n^{2}}$;
(b) $\sum_{n \geq 0} \frac{x^{n}}{2^{n}} ;$
(c) $\sum_{n \geq 0} \frac{x^{n}}{\sqrt{n!}} ;$
(d) $\sum_{n \geq 0} \sqrt{n!} \cdot x^{n}$.

Question 5

Find the radii of convergence of $\sum n^{n} z^{n}$ and of $\sum n^{2} z^{n}$. Sum the second series in closed form.

Question 6

Show that if $a(z)=\sum a_{n} z^{n}$ converges for small z and $a_{n} \neq 0$ for some $n>0$, then for all sufficiently small $z \neq 0$ we have $a(z) \neq a_{0}$. (In other words, the solution $z=0$ to $a(z)=a_{0}$ is isolated.)
Hint: Write $a(z)=a_{0}+z^{k}\left(a_{k}+\sum_{n>k} a_{n} z^{n-k}\right)$ and explain, exploiting continuity of the sum, why the second term is not zero for small, non-zero z.

Question 7

If the power series $a(z)$ and $b(z)$ converge for $|z|<R$, we have seen that their product $a(z) b(z)$ also converges for $|z|<R$. Find an example in which the radius of convergence for $a(z) b(z)$ is greater that that of either $a(z)$ or $b(z)$.
Hint: Try ratios of linear functions.

