Math185 - Homework 3

Due in class on Wednesday, February 7
Recall that a function is said to be of class C^{1} if it is differentiable with continuous partial derivatives, of class C^{2} if it is twice differentiable with continuous partials, etc.

Question 1

Show that, in polar coordinates (r, θ), the Cauchy-Riemann equations for the differentiable function $(r, \theta) \mapsto u+i v$ read as follows, when $r>0$

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r} .
$$

Question 2

Let f be a holomorphic function on an open set $D \subset \mathbb{C}$. Assuming that f is of class C^{2}, show that the complex derivative $d f / d z$ is also holomorphic in D.
Remark: The C^{2} assumption turns out to be unnecessary, but we cannot prove this yet.

Question 3* (Needham, IX.5,6)

Consider the map $f(x+i y)=\left(x^{2}+y^{2}\right)+i(y / x)$. Find and sketch the curves that are mapped by f into (a) horizontal lines and (b) vertical lines. Notice from your answer that f appears to be angle-preserving. Show that it is not in two ways: by explicitly finding some curves whose angle of intersection is not preserved and by checking that the Cauchy-Riemann equations fail.
Show furthermore that no choice of v can make $f(x+i y)=\left(x^{2}+y^{2}\right)+i v$ holomorphic.

Question 4

Verify, by the method of your choice, that the function $(x+i y) \mapsto e^{x} \cdot(\cos y+i \sin y)$ is holomorphic in the entire complex plane.

Question 5

Represent $\exp \left(\frac{\pi i}{4}\right), \exp \left(\frac{\pi i}{2}\right)$ and their sum in the complex plane. By expressing each of them as $x+i y$, deduce that $\tan \frac{3 \pi}{8}=1+\sqrt{2}$.
By considering $(2+i)(3+i)$, show that $\frac{\pi}{4}=\tan ^{-1}(1 / 2)+\tan ^{-1}(1 / 3)$.

Question 6

Which of the following functions are holomorphic functions of $z=x+i y=r(\cos \theta+i \sin \theta)$?

$$
e^{-y}(\cos x+i \sin x) ; \quad \cos x-i \sin y ; \quad r^{3}+3 i \theta ; \quad r e^{r \cos \theta}(\cos (\theta+r \sin \theta)+i \sin (\theta+r \sin \theta))
$$

Question 7 (Sarason, IV.8.2)

Establish the identities $(x=\operatorname{Re}(z), y=\operatorname{Im}(z))$

$$
\begin{aligned}
\cos z & =\cos x \cosh y-i \sin x \sinh y \\
\sin z & =\sin x \cosh y+i \cos x \sinh y \\
|\cos z|^{2} & =\cos ^{2} x+\sinh ^{2} y, \\
|\sin z|^{2} & =\sin ^{2} x+\sinh ^{2} y .
\end{aligned}
$$

Question 8

Show that the image under $z \mapsto \cos z$ of a horizontal line is an ellipse, and the image of a vertical line is a hyperbola. There are some exceptional cases: discuss those.

