Math185 - Homework 2

Due in class, Wednesday January 31

Question 1

Let $a=\cos \theta+i \sin \theta$ and let b be an arbitrary complex number. If $a \neq 1$, show that the map $z \mapsto a z+b$ represents geometrically a rotation of the plane by angle θ with center $z_{0}=b /(1-a)$. What happens if $a=1$?

Question 2

Find all the cube roots of i.
Find $(1+i)^{100}$.

Question 3

Factor the polynomial $x^{4}+1$ into two quadratic polynomials with real coefficients.
Hint: Split it first into four complex linear factors, and then combine those in suitable pairs.

Question 4

Prove the formula asserted in lecture: the area of the triangle T in $\mathbb{R}^{2} \cong \mathbb{C}$, with vertices defined by the complex numbers a, b, c (counterclockwise) is $\frac{1}{2} \operatorname{Im}(\bar{a} b+\bar{b} c+\bar{c} a)$.
Suggestion: Assume first that one of the vertices is the origin. Then, check that the formula is translation-invariant: it is not changed when all of a, b, c are shifted by the same complex number.

Question 5

Regard the map $z \mapsto f(z)=1 / z$ as a map from $\mathbb{R}^{2} \backslash\{0\}$ to \mathbb{R}^{2}. Show that it is real-differentiable everywhere and compute its Jacobian matrix. Verify the Cauchy-Riemann equations.
Using complex numbers, show that f is differentiable in the complex sense and determine its derivative. Verify that this agrees with the real calculation.

Question 6

At what points in \mathbb{C} are the following functions complex-differentiable? ($r=|z|$ in part d.)
(a) $f(z)=\operatorname{Re}(z)$
(b) $f(z)=\bar{z}$
(c) $f(z)=\bar{z}\left(z^{2}-1\right)$
(d) $f(z)=\bar{z} / r^{2}, f(0)=0$.

Question 7

Let the function f be holomorphic in an open disk $D \subset \mathbb{C}$. Show that each of the following conditions forces f to be constant.
(a) $f^{\prime} \equiv 0$ in D
(b) f is real-valued in D
(c) $|f|$ is constant in D
(d) $\arg f$ is constant in D
(e) $\overline{f(z)}$ is also holomorphic.

Hint: For the last four cases, use the Cauchy-Riemann equations.

Question 8, optional

Show that a linear map from \mathbb{R}^{n} to itself which preserves orthogonality of vectors must be the composition of an orthogonal map with a scaling. In particular, it preserve all angles (in absolute value).

