Math185 - Homework 10

Due on Wednesday, April 18

Question 1

Check that a Möbius transformation $z \mapsto \phi(z)=\frac{u z+v}{-\bar{v} z+\bar{u}}$ with $|u|^{2}+|v|^{2}=1$, correspond to an isometry (distance-preserving map) of the sphere under stereographic projection. To do so, choose points P, Q corresponding to $z, w=\phi(z)$ on the plane, and show that the scaling factor for lengths of tangent vectors to the sphere at P and Q under the map is 1 . For this, Recall from class that the scaling factors for stereographic projection from P to z and from Q to w are $\frac{1}{2}\left(|z|^{2}+1\right), \frac{1}{2}\left(|w|^{2}+1\right)$, respectively, and recall also that the derivative $\phi^{\prime}(z)$ is $1 /(-\bar{v} z+\bar{u})^{2}$, and proceed as follows:

1. Explain why the scaling factor under ϕ from z to w is $\left|\phi^{\prime}(z)\right|$;
2. Combine the scaling factors from P to z, z to w, w to Q and show that you get 1 .

Question 2

Check that a Möbius transformation can be written as a composition of the following three special types: translation $z \mapsto z+c$, complex scaling $z \mapsto k \cdot z(k \in \mathbb{C})$, and complex inversion $z \mapsto 1 / z$.

Question 3

Verify that any Möbius transformation preserves the cross-ratio of four points:

$$
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right):=\frac{z_{4}-z_{2}}{z_{4}-z_{1}} / \frac{z_{3}-z_{2}}{z_{3}-z_{1}}
$$

Hint: By Q.3, it suffices to check this for the three transformations listed.

Question 4

Find all Möbius transformations which take the imaginary line (with ∞) to the unit circle, and the point +1 to the origin. (Note: You should find a one-parameter family.)

Question 5

Project \mathbb{C} stereographically to the Riemann sphere. Then, project the sphere back to \mathbb{C}, but from the South pole instead of the North pole. The result is a map from $\mathbb{C} \backslash\{0\}$ to itself. Describe this map (a) by a formula (b) geometrically. What does the antipodal map on the sphere correspond to, in the complex plane? (Note: The two answers are closely related.)

Question 6*

Show that any pair of non-intersecting circles can be mapped to a pair of concentric circles by some Möbius transformation.
Hint: Show that you can find a circle C which is orthogonal to both of them. (It's easy if you Möbius map one of the circles to a line.) Then, show that you can find a Möbius map sending C to the imaginary axis and the line joining the centers of the two circles to the real axis. Conclude that both original circles are now centered at 0 .

Question 7

In geometry, inversion with respect to a circle with center C and radius r is the transformation on $\mathbb{R}^{2} \backslash\{C\}$ defined as follows. A point P gets sent to the unique point P^{\prime} lying on the ray joining C to P and such that the product of the distances from C to P and P^{\prime} equals r^{2}.
Show that inversion sends clircles to clircles. Specifically, circles not passing through C map to circles not passing through C, circles through C map to lines not passing through C, lines through C map to lines through C and lines not containing C map to circles through C.
Hint: Reduce to the case of the unit circle, and relate inversion to a Möbius transformation.

Question 8, Sarrason III. 7
Let $f(z)=\left(\frac{z+1}{z-1}\right)^{2}, f(1)=\infty, f(\infty)=1$. Describe the images of the following sets:
(a) The extended real axis (b) the extended imaginary axis (c) The right half-plane $\operatorname{Re} z>0$. Remark: 'Extended axis' means including the point ∞.

