Math185 - Midterm 1

Solve any FIVE of the problems for 25 points.
75 minutes. Closed book, no notes.

Question 1, 5 pts

Find, in the form $x+i y$, all square roots of $1+i$ and of $3+4 i$, and represent them on the plane. Comment: Sometimes the polar form is best for taking square roots, but sometimes not.

Question 2, 5 pts

Write down the definition of a harmonic function, and explain briefly why the real and imaginary parts of a (twice differentiable) holomorphic function are harmonic.
Show that the following function is harmonic and find a harmonic conjugate:

$$
\frac{y}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0)
$$

Hint: It may help to express in terms of z, \bar{z}.

Question 3, 5 pts

Determine the radius of convergence of the following two series. For series (b), also explain what happens on the boundary of the disk of convergence.

$$
\text { (a) } \quad \sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}} z^{n} \quad \text { (b) } \quad \sum_{n=1}^{\infty} \frac{z^{3 n}}{3^{n} \cdot n^{3}}
$$

Question 4, 5 pts

Find all the values of z in the complex plane where the following series converges:

$$
\sum_{n=1}^{\infty} \frac{1}{\left(z^{2}+1\right)^{n}}
$$

Sum the series. If you feel artistically inclined, sketch the region of convergence.

Question 5, 5pts

Compute the integral $\int z^{-1} d z$ along the following paths joining the points $1-i$ and $1+i$:
(a) the straight line;
(b) the quarter-circle of radius $\sqrt{2}$;
(c) the $3 / 4$ circle of radius $\sqrt{2}$, clockwise around 0 .

Explain why your answers for (a) and (b) agree, but the one for (c) is different.

Question 6, 5pts

By using Cauchy's theorem, applied to a contour in the upper half-plane consisting of the interval [$-R, R$] and a half-circle of radius R, and letting $R \rightarrow \infty$, verify that

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+x+1}=\frac{2 \pi}{\sqrt{3}}
$$

Also explain how you would do this integral by real calculus methods.

