Math 185 - Final Exam

Monday, May 8 2017, 11:30-2:30

Question 1, 10 pts

For the following functions, locate the singularities, if any, determine their type and find the residues if appropriate.

$$
\text { (a) } \frac{1}{\tan z-1} \quad \text { (b) } \frac{e^{z}-1}{e^{2 z}-1}
$$

Note: Explain clearly how you located all the complex zeroes of the denominators.

Question 2, 10 pts

1. Using the Cauchy-Riemann equations, show that for a holomorphic function $f=u+i v$, we have $f^{\prime}(z)=u_{x}-i u_{y}$. (As usual, $z=x+i y$.)
2. Find a holomorphic function $f(z)$ defined for $z \neq 0$ whose real part is $\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}$. Hint: If you cannot guess the answer, use Part 1.

Question 3, 10 pts

Using residues, or otherwise, prove that for real numbers a, b with $b>0$,

$$
\int_{-\infty}^{\infty} \frac{d t}{\left(t^{2}+1\right)\left((t-a)^{2}+b^{2}\right)}=\frac{\pi}{b} \cdot \frac{(b+1)}{\left(a^{2}+(b+1)^{2}\right)}
$$

Question 4, 10 pts

Find a Möbius transformation which takes the unit circle centered at 0 to itself and the line $x=5 / 3$ to the circle of radius $1 / 3$ centered at the origin.
Hint: It is possible to arrange that the real axis gets mapped to itself. Assuming this, determine where some important points have to go under the map.

Question 5, 8 pts

Using the Poisson kernel for the upper half-plane and the integral in Q3 above, find a bounded harmonic function $f(x, y)$ on the upper half-plane which restricts to $1 /\left(x^{2}+1\right)$ on the real axis.

Question 6, 12 pts

1. When a, b are distinct points lying on on the unit circle, explain why the function $f_{a, b}(z):=\arg \left(\frac{z-a}{z-b}\right)$ can be defined as a single-valued and harmonic function on the closed unit disk, except for the points a, b.
2. Describe the values of the function $f_{a, b}(z)$ you just defined for z on the unit circle (but away from a and b).
3. Find a harmonic function on the unit disk which takes the following limiting values on the unit circle:

$$
\begin{gathered}
1, \text { when } 0<\arg (z)<\frac{\pi}{2} \\
0, \text { when } \frac{\pi}{2}<\arg (z)<2 \pi
\end{gathered}
$$

