Math 185, Fall 2014: First exam, 9/18

25 points, 75 minutes
You must justify your answers.
Question 1 (3+3)
(a) Express z^{7} in polar form, $r(\cos \theta+\mathrm{i} \sin \theta)$, where

$$
z=\sqrt{\frac{\sqrt{2}+1}{2}}+\mathrm{i} \sqrt{\frac{\sqrt{2}-1}{2}} .
$$

Hint: First, compute z^{2}. And don't make mistakes...
(b) Find all the sixth roots of 8 i and represent them graphically in the plane.

Question 2 (4)
Prove that, for every integer $n>1$,

$$
1+\cos \frac{2 \pi}{n}+\cos \frac{4 \pi}{n}+\cdots+\cos \frac{2(n-1) \pi}{n}=0
$$

Hint: Consider the powers of $\omega=\cos \frac{2 \pi}{n}+\mathrm{i} \sin \frac{2 \pi}{n}$.
Question 3 (4+4)
(a) Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function in the unit disk D and assume it has continuous second (real) partial derivatives. Prove that the real part of f is harmonic.
Remark: You may use the Cauchy-Riemann equations, if you state them and their relationship to the holomorphy condition on f.
(b) Show that the function $x y /\left(x^{2}+y^{2}\right)^{2}$ is harmonic in \mathbb{R}^{2} away from $(0,0)$.

Question $4(3+2+2)$
(a) Find a Möbius transformation $M(z)$ that takes the points $-1,0,1$ to $0,1,4$ (as ordered).
(b) Find the fixed points of your transformation, the z with $M(z)=z$.
(c) What is the image under M of the circle of radius 1 , centered at 1?

Caution: Check your work for (a), before proceeding with (b) and (c)!
Bonus Question
(a) You are given two distinct complex numbers β, δ. Assuming that $|x-\beta|=|x-\delta|$ for all real numbers x, prove that $\beta=\bar{\delta}$. Hint: Draw a picture.
(b) Show that any Möbius transformation which takes the real axis (with ∞) to the unit circle can be written in the form

$$
M(z)=\alpha \frac{z-\beta}{z-\bar{\beta}}
$$

for certain complex number α of modulus 1, and complex (and non-real) number β. Hint: Specialize a general map to $z=\infty$; then use Part (a).

