Math 185, Fall 2014: First exam, 9/18

25 points, 75 minutes You must justify your answers.

Question 1 (3+3)

(a) Express z^7 in polar form, $r(\cos \theta + i \sin \theta)$, where

$$z = \sqrt{\frac{\sqrt{2}+1}{2}} + i\sqrt{\frac{\sqrt{2}-1}{2}}.$$

Hint: First, compute z^2 . And don't make mistakes...

(b) Find all the sixth roots of 8i and represent them graphically in the plane.

Question 2 (4)

Prove that, for every integer n > 1,

$$1+\cos\frac{2\pi}{n}+\cos\frac{4\pi}{n}+\cdots+\cos\frac{2(n-1)\pi}{n}=0.$$

Hint: Consider the powers of $\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.

Question 3 (4+4)

(a) Let $f : D \to \mathbb{C}$ be a holomorphic function in the unit disk *D* and assume it has continuous second (real) partial derivatives. Prove that the real part of *f* is harmonic.

Remark: You may use the Cauchy-Riemann equations, if you state them and their relationship to the holomorphy condition on *f*.

(b) Show that the function $xy/(x^2 + y^2)^2$ is harmonic in \mathbb{R}^2 away from (0,0).

Question 4 (3+2+2)

(a) Find a Möbius transformation M(z) that takes the points -1, 0, 1 to 0, 1, 4 (as ordered).

(b) Find the fixed points of your transformation, the *z* with M(z) = z.

(c) What is the image under *M* of the circle of radius 1, centered at 1?

Caution: Check your work for (a), before proceeding with (b) and (c)!

Bonus Question

(a) You are given two distinct complex numbers β , δ . Assuming that $|x - \beta| = |x - \delta|$ for all real numbers x, prove that $\beta = \overline{\delta}$. *Hint:* Draw a picture.

(b) Show that any Möbius transformation which takes the real axis (with ∞) to the unit circle can be written in the form

$$M(z) = \alpha \frac{z - \beta}{z - \bar{\beta}}$$

for certain complex number α of modulus 1, and complex (and non-real) number β . *Hint:* Specialize a general map to $z = \infty$; then use Part (a).