Math 185 - Final Exam

Friday, December 19 2014, 7-10pm

This is a closed book exam.
Please write clearly and explain your reasoning, unless instructed otherwise

6 Questions, 45 points, 180 minutes.

Name:

Q1	
Q2	
Q3	
Q4	
Q5	
Q6	
Tot.	

Question 1, 6 pts

True or false? Circle the correct answer; no reason necessary.

T F A polynomial in z and \bar{z} represents a holomorphic function if and only if it is independent of \bar{z} (it has an expression where the variable \bar{z} does not appear).
$\mathrm{T} \quad \mathrm{F} \quad$ If $\sum_{n} a_{n} z^{n}$ and $\sum_{n} b_{n} z^{n}$ converge for all $|z|<R$, then $\sum_{n}\left(a_{n}-b_{n}\right) z^{n}$ converges for all $|z|<R$.

T F The function $\cos \left(z^{3}+1 / z^{3}\right)$ has a Laurent series centered at 0 which converges everywhere on $\mathbb{C} \backslash\{0\}$.

T \quad F If, for an entire holomorphic function f, the derivative f^{\prime} is bounded on \mathbb{C}, then f is linear or a constant function.

T F If the function f is defined and holomorphic near p and $f(p)=0$, then for a sufficiently small circle C centered at $p, \frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z) d z}{f(z)}$ is a positive number.

T F If, for a holomorphic function f, the modulus $|f|$ has a local maximum at some point in the interior of its domain, then f is constant near that point.

Question 2, 9 pts

Describe the types of singularities of each of the following functions (at finite values of z) and determine the residues at all isolated singularities:
(a) $\tan (z)$
(b) $\frac{\sin \left(z+z^{-1}\right)}{z+z^{-1}}$
(c) $\frac{z}{\left(z^{2}-1\right)^{2}}$

Hint for (b): No computation is needed to find the residue at the one nasty singularity.

Question 3, 7 pts

By integrating on the contour surrounding a circular sector of angle $2 \pi / n$ in the upper half plane and letting $R \rightarrow \infty$, show that for any real $0 \leq \alpha<n-1$,

$$
\int_{0}^{\infty} \frac{x^{\alpha} d x}{1+x^{n}}=\frac{\pi}{n \sin (\pi(\alpha+1) / n)}
$$

What, if anything, needs to change if $-1<\alpha<0$?

Question 4, 6 pts

Prove that

$$
\int_{0}^{\infty} \frac{(\log x)^{2} d x}{x^{2}+1}=\frac{\pi^{3}}{8}
$$

Hint: Integrate on an upper-half circle, with a slight notch to avoid 0. Justify the limits you need.

Question 5, 6 pts

Prove that the sum of all residues of the following function on \mathbb{C} equals $\frac{3}{5}$:

$$
\frac{3 z^{8}-4 z^{7}+5 z^{3}-2 z+1}{5 z^{9}-11 z^{6}+12 z^{5}+z^{3}-z}
$$

Hint: Do NOT attempt to compute all the residues; instead, use the residue formula on a suitable contour.

Question 6, 10 pts

1. Check that the function $\arg (z)$ in the upper half-plane \mathfrak{H} is harmonic (including the real line, but excluding the origin). Quickly describe the limiting behavior as you approach the discontinuity at 0 .
2. By judicious use of functions $\arg (z-a), a \in \mathbb{R}$, find a bounded, harmonic function on \mathfrak{H} which, on the real axis, takes the limiting values 0 for $|x|>1$ and 1 for $|x|<1$. Briefly say how you would generalize your method to find a harmonic functions with prescribed, constant boundary values on (a finite collection of) real intervals.
3. Let $G:=\{z \mid \operatorname{Im}(z)>0$ and $|z|>1\}$ be the exterior of the unit half-disk in \mathfrak{H}. Find a conformal map identifying G with \mathfrak{H}, and use it to find a harmonic function in G with limiting values 1 on the half-circle and 0 on the real axis.
