Math185 - Midterm 1

Thursday, October 5, 2006, 9:40-11:00
This is a closed book exam.
Please write clearly and explain your reasoning, unless instructed otherwise

Question 1, 4 pts

Are the following functions harmonic? Explain your answer.

$$
\text { (a) } x^{3}-6 x y^{2} ; \quad \text { (b) } e^{2 r \cos \theta} \cdot \cos (2 r \sin \theta)
$$

Question 2, 5 pts

True or false? Circle the correct answer; no reason necessary.
T F If $\operatorname{Im} a<0$, then a has exactly one square root in the upper half-plane
T \quad F If f and \bar{f} are both holomorphic in a disk D, then f is constant
T F A conformal map which maps the unit disk onto itself must be a rotation
T F Under stereographic projection, every Möbius map corresponds to a rigid rotation of the sphere

T F The function $(x+i y) \mapsto x^{2}+y^{2}$ is the real part of some holomorphic function
T F The product of two holomorphic functions is holomorphic
T F Any Möbius map which fixes 0,1 and ∞ must preserve distances
T F If the function u is harmonic, then so is u^{2}
T F Any Möbius map which takes a circle C to a circle C^{\prime} must map the interior of C to the interior of C^{\prime}
$\mathrm{T} \quad \mathrm{F} \quad$ If $\sum a_{n} z^{n}$ converges for $z=z_{1}$ and if $\left|z_{1}\right|=\left|z_{2}\right|$, then it also converges for $z=z_{2}$

Question 3, 4pts

Let $n>1$. By taking imaginary parts in the identity

$$
1+z+\cdots+z^{n-1}=\frac{1-z^{n}}{1-z}
$$

with a suitable complex number z, show that

$$
\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\cdots+\sin \frac{(n-1) \pi}{n}=\frac{\sin \frac{\pi}{n}}{1+\cos \frac{\pi}{n}}
$$

Question 4, 6 pts

Let M be the Möbius transformation which takes the points $-1,1,2$ to the points $0,1, \infty$. Find $M(0)$. What is M of a line? What happens to the upper half-plane?

Question 5, 6 pts

Find the radii of convergence of the following series:

$$
\text { (a) } \sum 2^{n} z^{n} ; \quad \text { (b) } \sum 2^{n} z^{2 n} ; \quad \text { (c) } \sum 2^{n} z^{n^{2}}
$$

For the series in (a), also discuss what happens on the boundary of the disk of convergence.

Question 6, Optional Extra Credit: 2.5 pts

Assume that the power series $\sum a_{n} z^{n}$ converges in some non-empty disk $|z|<R$. If the sum $a(z)$ is the zero function, show that all coefficients a_{n} must be zero.

