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FLATNESS AND THE ORE CONDITION FOR RINGS

PETER TEICHNER

(Communicated by Lance W. Small)

Abstract. We prove the following result on the universal localization of a
ring R at an ideal I: If the universal localization is flat as an R-module,
then R satisfies the Ore condition with respect to the multiplicative set of
elements that become invertible modulo I. It is well known that for domains
the converse of this result holds, and hence we have found in this case a new
characterization of the Ore condition.

1. Introduction

Why would a low-dimensional topologist be interested in localizations of non-
commutative rings? First of all, unlike in higher dimensions, it is impossible
to assume anything too drastic about the fundamental group π1M of, say, a 3-
dimensional manifold M3, since this would actually answer most of the questions
right away (modulo things like the Poincaré conjecture). Thus one is stuck with the
usually noncommutative group ring Z[π1M ]. The homotopy and homology groups
of M become modules over this ring, hence K-theory enters the picture. As for
L-theory, there are linking forms defined on the first homology of covers of M3;
see e.g. [3]. If π is the deck transformation group of the cover, then these linking
forms take values in the quotient S−1 · Z[π]/Z[π] which in the easiest case π = 1
could be the usual coefficient group for linking forms Q/Z. The multiplicative set
S which defines the above localization is quite flexible and is usually chosen accord-
ing to desired applications. For example, the complement of a knot K in 3-space
has a canonical infinite cyclic cover M(K). Then the Alexander polynomial AK(t)
of the knot is nothing else than the characteristic polynomial of H1(M(K)) as a
Z[π]-module, with π infinitely cyclic, generated by t. Moreover, the resulting link-
ing form, the “Blanchfield pairing”, takes values in Q(t)/Z[t, t−1] where Q(t) is the
quotient field of the group ring. It gives additional information about the knot K
known as “S-equivalence”, like the twisted signatures or twisted Arf invariants of
the knot.

In [1] we generalize this example from Z to other torsionfree solvable groups
π. It is interesting to observe that unless the Alexander polynomial is trivial, i.e.
π1M(K) is perfect, the commutator series of the fundamental group of the knot
complement never stabilizes, providing a huge number of geometrically interesting
torsionfree solvable groups. For such a group, the nonzero elements of Z[π] satisfy
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the Ore condition (see below) which implies that there is a skew-field of classical
quotients for our (regular) group ring. It is extremely important in this particular
application that this Ore localization is flat as a module over Z[π], otherwise many
of the homological calculations go awry.

It was this desire for flatness that tempted the author to study which other
localizations could have this important property. It turns out that for the most
interesting multiplicative sets, flatness actually implies the Ore condition!

Main Theorem. If the universal localization of a ring R at a two-sided ideal I is
flat as a left R-module, then R satisfies the right Ore condition with respect to the
multiplicative set of elements that become invertible modulo I.

Many thanks to Andrew Ranicki and Lance Small for discussions on the topic.
In particular, Lance pointed out that the above theorem does not hold for more
general multiplicative sets, justifying our special assumption (which was originally
motivated from the topological applications). In the example one takes a field K
and the ring

R :=
(
K 0
K(x) K[x]

)
, S−1R =

(
K 0
K(x) K(x)

)
with multiplicative set S equal to all nontrivial elements in R. Then S satisfies the
left Ore-condition, thus the above quotient field exists (and is isomorphic to the
universal localization). However, S does NOT satisfy the right Ore-condition but
S−1R is still flat as a left R-module.

2. Ore’s condition

Let R be a ring with unit. For any subset S of R one has the universal S-inverting
localization R → RS , i.e. the elements of S become invertible in RS and if that is
also the case for another ring-homomorphism R→ A, then there is a commutative
diagram

R

��
????????

// RS

~~}
}

}
}

A

with a unique map RS → A. Then RS is well defined up to canonical isomorphism,
and one gets the same result if one closes S multiplicatively; see e.g. [2]. The ring
theoretic properties of RS are far from being understood. In general, one does not
even have a good criterion for garanteeing the nontriviality of RS .

A particularly good case is when R is commutative and S contains no zero-
divisors. Then the ring RS consists of fractions with denominators from S and
many properties of R carry over to RS . Moreover, RS is flat as an R-module which
is a key property in many homological calculations.

In the noncommutative context one needs two conditions for an analogous ring
of fractions to exist. One condition has to do with zero-divisors in S and the other
is as follows.

Ore’s condition. For every r ∈ R and s ∈ S the intersection sR∩rS is nonempty.

The explanation for this condition is simple: If every element is supposed to be
of the form r ·s−1, then in particular one has to find r0, s0 such that s−1 ·r = r0 ·s−1

0

for every given r ∈ R and s ∈ S. This is obviously equivalent to the above condition
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(which has the crucial advantage of being formulated inside R). Note that one can
interchange the order of ring elements, so that the above is really the right Ore
condition. We will suppress this distinction except for the precise statement of our
Main Theorem below.

Theorem (Ore [4]). If S contains no zero-divisors and satisfies the Ore condition,
then RS is isomorphic to the Ore localization R · S−1 which by definition consists
of pairs (r, s) ∈ R×S modulo a concrete equivalence relation which reflects the fact
that (r, s) really denotes r · s−1.

The Ore localization has many very good ring theoretic properties; see [5] or [2].
In particular, as in the commutative case, R · S−1 is flat over R. This fact is well
known if S contains no zero-divisors; see e.g. [5, Prop. 3.5]. However, it seems
worth pointing out that flatness really has nothing to do with zero-divisors. Since
we have not found this simple fact in the literature, we give a short proof.

Proposition 1. If R satisfies the Ore condition with respect to S, then the universal
localization RS is flat as a left R-module.

Proof. The important observation is that the Ore condition implies that every
element of RS can be written in the form r · s−1 with r ∈ R and s ∈ S (even
though the relations on these fractions can be complicated in the presence of zero-
divisors). Moreover, one has “common multiples”, i.e. given finitely many si ∈ S,
there is an s ∈ S such that s−1

i · s ∈ R. More precisely, this means that there are
ri ∈ R such that s := si · ri ∈ S.

Now let i : M → N be a monomorphism of right R-modules. We want to show
that

i⊗ id : M ⊗R RS −→ N ⊗R RS
is still a monomorphism. By the above observations, an arbitrary element x ∈M ⊗
RS can be written as x = m⊗s−1 with m ∈M and s ∈ S: Clearly, x =

∑
imi⊗s−1

i

but by using a common multiple s := si · ri ∈ S we get

x =
∑
i

mi ⊗ s−1
i =

∑
i

mi ⊗ ri · s−1 =
∑
i

mi · ri ⊗ s−1 =: m⊗ s−1.

If x ∈ Ker(i⊗ id), then

0 = (i⊗ id)(x) · s = (i(m)⊗ s−1) · s = i(m)⊗ 1.

�

3. Flatness

We now restrict our attention to a special class of multiplicative subsets. Namely,
let I be a two-sided ideal in R and let

SI := {r ∈ R | r becomes invertible mod I}.

In this case we let R(I) := RSI , the universal localization at I. Then the main result
stated in the Introduction is the following characterization of the Ore condition.

Main Theorem. Let R and I be as above. Then R satisfies the right Ore condition
with respect to SI if and only R(I) is flat as a left R-module.
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Proof. We first need a slight reformulation of the Ore condition for general S. For
ri ∈ R define the right R-ideal

(r1 : r2) := {a ∈ R | r2 · a ∈ r1R}.

Lemma 1. The Ore condition is equivalent to (s : r) ∩ S 6= ∅ for every r ∈ R and
s ∈ S. �

The following lemma will be applied in particular for the right ideals (s : r)
above.

Lemma 2. For any right ideal J in R the two conditions J ∩ SI 6= ∅ and R/J ⊗R
R/I = 0 are equivalent. (Here R/J and R/I are viewed as right respectively left
R-modules in the natural way.)

Proof. Since the tensor product functor ⊗RR/I is right exact, we have an exact
sequence

J ⊗R R/I
f−−−−→ R/I −−−−→ R/J ⊗R R/I −−−−→ 0

where f(j ⊗ r) ≡ j · r mod I. This implies that R/J ⊗R R/I = 0 if and only if
there are jk ∈ J and rk ∈ R such that

∑
k jk · rk ≡ 1 mod I. Since J is a right

ideal this condition is equivalent to the existence of a j ∈ J such that j ≡ 1 mod I.
But this is clearly equivalent to J ∩ SI being nonempty. �

To finish the proof of our theorem, we need to show that for r ∈ R and s ∈ S
we have R/(s : r) ⊗R R/I = 0. By the universal property, we have a surjection
R(I) � R/I of rings and thus it suffices to show that

R/(s : r)⊗R R(I) = 0.

Note that left multiplication with r gives an exact sequence of right R-modules

0 −−−−→ (s : r) −−−−→ R
r·−−−−→ R/sR

which implies that R/(s : r) is isomorphic to a right R-submodule of R/sR. Since
R/sR⊗RR(I) is generated by elements of the form 1⊗x with x ∈ R(I) (by the right
exactness of the tensor product) it follows from the fact that s ∈ S is invertible in
R(I) that

1⊗ x = 1⊗ s · s−1 · x = s⊗ s−1 · x = 0
and hence R/sR⊗R R(I) = 0. However, if R(I) is flat as a left R-module, then our
submodule R/(s : r) inherits this property which we needed to show. �
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