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Abstract. We show that if the lower central series of the fundamental group of a
closed oriented 3-manifold stabilizes then the maximal nilpotent quotient is a cyclic
group, a quaternion 2-group cross an odd order cyclic group, or a Heisenberg group.
These groups are well known to be precisely the nilpotent fundamental groups of closed
oriented 3-manifolds.

1. Introduction

There are many different approaches to the study of 3-manifolds. There is a flourishing
combinatorial school from Dehn, Papakryiakopoulos, Haken and Waldhausen to Gordon
and Luecke, which has shown that many 3-manifold questions can be reduced to questions
about the fundamental group. A co-equal off-shoot of the combinatorial school folds in
dynamics and complex analysis. This is Thurston’s program on geometrizing certain
characteristic and simple pieces of 3-manifolds by showing that each is modelled locally
on one of the eight 3-dimensional geometries (of which only the hyperbolic case is not fully
understood). A third perspective on 3-manifolds is through quantuum field theory. The
ideas of Witten, Jones, Vassiliev and many others have inspired tremendous activity and,
in time, may contribute substantially to the topological understanding of 3-manifolds.

This paper takes a fourth perspective by looking at a 3-manifold through nilpotent eyes,
observing only the tower of nilpotent quotients of the fundamental group, but never the
group itself. This point of view has a long history in the study of link complements and
it arises naturally if one studies 3- and 4-dimensional manifolds together. For example,
Stallings proved that for a link in S3 certain nilpotent quotients of the fundamental
group of the link complement are invariants of the topological concordance class of the
link. These quotients contain the same information as Milnor’s µ̄-invariants which are
generalized linking numbers. For precise references about this area of research and the
most recent applications to 4-manifolds see [5].

Turaev [11] seems to have been the first to consider nilpotent quotients of closed
3-manifold rather than link complements. Much earlier, the nilpotent fundamental
groups of closed 3-manifolds were classified. Thomas [10] showed in particular that
statements (1) and (2) in the following Theorem 1 are equivalent.
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Theorem 1. For a nilpotent group N the following statements are equivalent:

(1) N is a (finite or infinite) cyclic group Z/n, a product Q2n × Z/(2k + 1), or a
Heisenberg group Hn.

(2) N is the fundamental group of a closed orientable 3-manifold.
(3) N is finitely generated and there exists a class m ∈ H3(N) such that the cap-

product with m induces an epimorphism H1(N) → H2(N) and an isomorphism
Torsion H2(N)→ Torsion H1(N).

(4) N is the maximal nilpotent quotient of the fundamental group of a closed orientable
3-manifold.

(5) N is the maximal nilpotent quotient of the fundamental group of a closed orientable
3-dimensional Poincaré complex.

Recall that a group has a maximal nilpotent quotient if and only if it’s lower central
series stabilizes. In (1) above the Heisenberg groups Hn are the central extensions of Z2

by Z classified by the Euler class n ∈ Z ∼= H2(Z2; Z). They occur as the fundamental
groups of orientable circle bundles over the 2-torus. Euler class n = 0 corresponds to
the 3-torus. The infinite cyclic group is π1(S

1× S2) and the finite cyclic and generalized
quaternion groups Q4k are subgroups of SU(2). (Here Q4k := 〈x, t | txt−1 = x−1, xk = t2〉
has order 4k.) Finally, a product Q2n × Z/(2k + 1) can be embedded into SO(4) such
that it acts freely on S3, see [12]. Thus these finite groups are fundamental groups of
3-dimensional homogenous spaces.

This shows that (1) implies (2) in the above theorem. The other easy fact is that (2)
implies (3): If N is the fundamental group of a closed oriented 3-manifold then m can be
taken to be the image of it’s fundamental class. From [11, Thm.2] it easily follows that
statement (3) implies (4). It is clear that (4) implies (5) and thus the aim of this paper
is to show that (5) implies (1).

Theorem 1 can be read in two essentially different ways: A group theorist may take (3)
as a homological characterization of the family of groups in (1). A 3-manifold topologist
would probably prefer the point of view of (4), i.e. that there are very few possibilities for
the lower central series of the fundamental group of a closed oriented 3-manifold: Either
it descends forever or it stabilizes with the maximal nilpotent quotient being one of the
groups in (1).

It is easy to construct examples exhibiting both phenomena: For example, take any
surgery description of one of the 3-manifolds described above. Tying a local knot into
one of the components does not change the lower central series of the 3-manifold group
but it drastically changes the 3-manifold itself. Conversely, if H1(M) has more than 3
generators then it has no maximal nilpotent quotient: This follows from the fact that
H1(Hn) ∼= Z2×Z/n and H1(Q2n) ∼= Z/2×Z/2 for n > 2 (and Q4 = Z/4). Moreover, the
only groups in list (1) that have nilpotency class > 3 are the one containing Q2n , n > 3. In
this single case it might be more difficult to decide whether π1M has a maximal nilpotent
quotient because Q2n modulo the k-th term of the lower central series is the group Q2k

for all k > 2.
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This problem vanishes if one considers a rational version of Theorem 1. We will prove
it in analogy to the integral case. This rational result was first obtained in [4] using
completely different methods, namely methods from rational homotopy theory. This
approach however does not seem to provide a proof of Theorem 1 but it motivated the
research in this paper.

Theorem 2. For a torsionfree nilpotent group N the following statements are equivalent:

(1) N is trivial, infinite cyclic or a Heisenberg group.
(2) N is the fundamental group of a closed orientable 3-manifold.
(3) N is finitely generated and there exists a class m ∈ H3(N ; Q) such that the cap-

product with m induces an epimorphism H1(N ; Q)→ H2(N ; Q)
(4) N is the maximal torsionfree nilpotent quotient of the fundamental group of a closed

orientable 3-manifold.
(5) N is the maximal tosionfree nilpotent quotient of the fundamental group of a closed

orientable 3-dimensional Poincaré complex.

Recently, Stong [8] obtained a different generalization of this rational result: If a 3-
manifold group does not have a maximal torsionfree nilpotent quotient then the ranks
of the succesive quotients of the terms in the lower central series grow exponentially. In
a further related direction, Cochran and Orr [2] obtained examples of 3-manifold groups
whose transfinite lower central series does not stabilize at the first infinite cardinal.

Our paper is organized as follows: In Section 2 we give the necessary definitions and
prove some (probably well-known) results on nilpotent groups. Section 3 contains the
proof of Theorem 1 modulo three Propositions. Our proof is modelled on a proof of
Thomas’ theorem which we give as a “warm up”. Finally, Section 4 contains the proofs
of the three Propositions used in Section 3 and the proof of Theorem 2.

2. Some nilpotent group theory

The lower central series of a group G is defined by G1 := G and Gk+1 := [G, Gk] for
k > 1. G is nilpotent if Gk = 1 for some k and the smallest such k, if it exists, is called
the class of G. Thus abelian groups are precisely the groups of class 2. Any group G
has the nilpotent quotients G/Gk and it has a maximal nilpotent quotient if and only if
Gk = Gk+1 for some k. We define the rank of an abelian group A to be the dimension
of A⊗Q. For a nilpotent group N we define it’s rank to be the sum of the ranks of the
abelian groups Nk/Nk+1.

Lemma 1. A nilpotent group N is finite if and only if H1(N) is finite.

Proof. The proof is an induction on the class of N . If the class is 2 the statement is true
because N ∼= H1(N). Assume that N/Nk is finite. Then H2(N/Nk) is also a finite group,
see [1]. The same reference explains the 5-term exact sequence for groups: Given a short
exact sequence

1 −→ N −→ G −→ Q −→ 1
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of groups, the bottom part of the corresponding Leray-Serre spectral sequence is an exact
sequence of homology groups (with integral coefficients)

H2(G) −→ H2(Q) −→ N
/
[N, G] −→ H1(G) −→ H1(Q) −→ 0.

Applying this to the central extension

1 −→Nk/Nk+1 −→N/Nk+1 −→N/Nk −→1

implies that N/Nk+1 is also finite.

Corollary 2. For a nilpotent group N , the set of all elements of finite order is a (char-
acteristic) subgroup of N .

Proof. Let g, h be elements of finite order in N . We need to show that their product g ·h
is still of finite order. Let G be the subgroup of N generated by g and h. It suffices to
show that G is finite. Clearly, H1(G) is finite and since G is nilpotent the result follows
from Lemma 1.

The above subgroup is called the torsion subgroup Tor(N) of N . N is torsionfree if
Tor(N) = 1. In the following lemma we will use a commutator identity which holds in
any group G. Namely, for elements a, b ∈ G and n ∈ N one has

[an, b] = [a, b](a
n−1) · [a, b](a

n−2) · · · · · [a, b]

if one uses the conventions [a, b] := a · b · a−1 · b−1 and ba := a · b · a−1.

Lemma 3. A nilpotent group N is torsionfree if and only if it’s center C and N/C are
torsionfree.

Proof. The only thing to show is that if N is torsionfree and x ∈ N satisfies xn ∈ C for
some n ∈ N then x ∈ C. Take any element g ∈ N and define xk by x1 := [x, g] and
xk+1 := [x, xk]. Since N is nilpotent, we know that xc+1 = 1 for some c. This means that
x commutes with xc and thus the above commutator identity simplifies to give

[xn, xc−1] = [x, xc−1]
n = (xc)

n

But by assumption xn is central which implies (xc)
n = 1. Since N is torsionfree this

indeed shows that xc = 1. Continuing in exactly the same manner leads to 1 = xc−1 =
· · · = x1 = [x, g]. Since g was arbitrarily, we can conclude that x is central.

The main result of this section follows. We use the notation hdZ(G) for the Z-homological
dimension of a group G, i.e. the smallest n ∈ N ∪∞ such that Hi(G; Z) vanishes for all
i > n. We also introduce some notation which will be used in the proof and throughout
the rest of the paper:

Let H be a group and P an H-module. Then the 0-th homology with twisted coeffi-
cients H0(H ; P ) ∼= P/I(H) · P is isomorphic to the cofixed point set PH of P under the
H-action, i.e. the largest quotient module of P on which H acts trivially, [1]. Here I(H)
is the augmentation ideal of the group ring Z[H ].
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Similarly, H0(H ; P ) is isomorphic to the fixed point set P H of P under the H-action,
i.e. the largest submodule of P on which H acts trivially.

Lemma 4. For a finitely generated nilpotent group N the following statements are equiv-
alent:

(i) hdZ(N) <∞.
(ii) N is torsionfree.
(iii) K(N, 1) is homotopy equivalent to a closed orientable manifold of dimension

rank(N) = hdZ(N). More precisely, K(N, 1) is homotopy equivalent to an iter-
ated circle bundle with structure groups U(1).

Proof. The conclusions (iii) ⇒ (i) and (iii) ⇒ (ii) are obvious. (ii) ⇒ (iii) follows by
induction from Lemma 3. One just has to observe that H2(N ; Z) classifies central ex-
tensions of N by Z as well as principal circle bundles over K(N, 1) with structure group
U(1). The induction starts with the fact that the r-torus is a K(Zr, 1).

To show (i) ⇒ (ii) we will induct on the rank of N . If rank(N) = 0 then H1(N) is
finite and by Lemma 1 N is also finite. But the integral homology groups of a finite
group are nontrivial in infinitely many dimensions [9]. So our assumption hdZ(N) < ∞
implies N = 1.

Now assume that rank(N) > 0. Then N and thus H1(N) are infinite and we get an
extension

1 −→U −→N −→Z −→1

of nilpotent groups with rank(U) < rank(N). Below we show that hdZ(U) < ∞ which
implies by induction that U and hence N are torsionfree.

Let t ∈ N be an element which maps to a generator of Z in the above extension. Then
the infinite cyclic group 〈t〉 acts by conjugation on U and thus on Hi(U). The Wang
sequence for the above extension gives exact sequences for any i > 0:

0 −→Hi(U)〈t〉 −→Hi(N) −→Hi−1(U)〈t〉 −→0

Our claim that hdZ(U) <∞ now follows from the following

Lemma 5. The 〈t〉-modules Hi(U) are nilpotent, i.e. there exists integers Ni such that
(t− 1)Ni is the zero-map on Hi(U). In particular, if Hi(U) is nontrivial then so are the
fixed and cofixed point sets under the 〈t〉-action.

To prove the lemma, define Uk by U1 := U and Uk+1 := [N, Uk]. Since N is nilpotent
we have Uc = 1 for some c which is smaller or equal to the class of N . Moreover, t acts as
the identity on the quotients Uk/Uk+1. By induction, we assume that 〈t〉 acts nilpotently
on the modules Hi(U/Uk). The Leray-Serre spectral sequence for the extension

1 −→Uk/Uk+1 −→U/Uk+1 −→U/Uk −→1

has E2
p,q-terms Hp(U/Uk; Hq(Uk/Uk+1)) which are then also nilpotent 〈t〉-modules. Conse-

quently, the E∞
p,q-terms are all nilpotent 〈t〉-modules and so is Hp+q(U/Uk+1) as a (finitely)

iterated extension of these modules.



6 PETER TEICHNER

The following result of B. Dwyer [3] will be essential for our proof.

Theorem 3. Let N be a finitely generated nilpotent group and P a finitely generated
Z[N ]-module. If H0(N ; P ) = 0 then Hi(N ; P ) = 0 for all i ≥ 0.

One can extend Dwyer’s theorem to cohomology groups.

Corollary 6. Let N be a finitely generated nilpotent group and P a finitely generated
Z[N ]-module. If H0(N ; P ) = 0 then H i(N ; P ) = 0 for all i ≥ 0.

Proof. Let Z be a nontrivial central cyclic subgroup of N . It is enough to show that the
E2-term of the Serre spectral sequence

Ep,q
2 = Hp(N/Z; Hq(Z; P )) =⇒ Hp+q(N ; P )

vanishes identically. By induction it suffices to show that the assumption of Dwyer’s
theorem is satisfied for the N/Z-modules Hq(Z; P ). Since Z is a cyclic group, these
twisted cohomology groups are fully understood, see [1, p.58]. In particular, one can show
that H0(N/Z; Hq(Z; P )) = 0 by using Lemma 7 below which is an easy consequence of
Dwyer’s theorem and the long exact coefficient sequence [1, p.71].

Lemma 7. Let N be a finitely generated nilpotent group and

0 −→P ′ −→P −→P ′′ −→0

an extension of Z[N ]-modules with P (and thus P ′, P ′′) finitely generated. Then PN = 0
implies that (P ′)N = (P ′′)N = 0.

3. Outline of the proof of Theorem 1

As a warm up, we first give a proof of Thomas’ theorem [10] that (2) implies (1) in
Theorem 1. So let N be the nilpotent fundamental group of a closed orientable 3-manifold
M . Then M is the connected sum of prime 3-manifolds Mi. Therefore, N is the free
product of the fundamental groups π1Mi. Since N is nilpotent, only one of these groups
can be nontrivial and thus we may assume that N is the fundamental group of a prime
3-manifold M . The argument splits now into several cases.

Case I: N is a finite group.

Then N acts freely on the homotopy 3-sphere M̃ and thus has 4-periodic cohomology.
Since N is a finite nilpotent group, it is the direct product of it’s p-Sylow subgroups [6]
which are also 4-periodic [1, p.156]. The same reference shows that the p-Sylow subgroups
are cyclic for p odd, and cyclic or generalized quaternion for p = 2. Therefore, N is the
direct product of such groups which we wanted to show.

Case II: N has infinite order.

This case splits naturally into two subcases depending on whether or not π2M is trivial.
If not, then the prime 3-manifold M is homeomorphic to S1×S2 and hence N is infinite
cyclic.
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If π2M = 0 then M is a K(N, 1) and hence N is torsionfree of rank 3. The center C
of N is nontrivial and torsionfree. Moreover, N/C is also torsionfree by Lemma 3. Note
that C = Z2 is impossible: It would imply that N/C ∼= Z is generated by one element
which commutes with itself and C. Therefore, either C = N or C ∼= Z. In both cases N
is a central extension of Z2 by Z and thus one of the Heisenberg groups.

This finishes the proof that (2) implies (1) in Theorem 1. We now outline the proof
that (5) also implies (1) which is the only part of Theorem 1 we need to prove. So let M
be a closed orientable 3-dimensional Poincaré complex whose fundamental group allows
a maximal nilpotent quotient N . Consider the fibration

M ′ −→M −→K(N, 1)

induced from the quotient map π1M → N . Then M ′ has the homotopy type of the
covering space of M for which N is the group of deck transformations. We will do
calculations with the Serre spectral sequence

E2
p,q = Hp(N ; Hq(M

′)) =⇒ Hp+q(M)

for the above fibration. Since N is the maximal nilpotent quotient of π1M we get
H1(M

′)N = π1M
′/[π1M

′, π1M ] = 0. Applying Dwyer’s Theorem 3 for P := H1(M
′)

we get E2
i,1 = 0 for all i ≥ 0 in our spectral sequence. As above, our argument splits now

into several cases.

Case I: N is a finite group.

Then M ′ is up to homotopy a closed 3-dimensional Poincaré complex and thus H3(M
′) =

Z. Moreover, we will prove the following proposition in Section 4.

Proposition 1. In the above situation, H2(M
′)N = 0.

This result, Dwyer’s Theorem 3 and the fact that the covering map M ′ → M has
degree |N | imply that we get an element of order |N | in H3(N) ∼= H4(N). By [1, p.154]
N then has 4-periodic cohomology. The proof in Case I now concludes exactly as in the
warm up.

Case II: N has infinite order.

Then Hi(M
′) = 0 for all i ≥ 3 and we will prove the following result in Section 4.

Proposition 2. In this situation

H2(M
′) ∼=

{
Z if rank(N) = 1,

0 else.

Therefore, as in the warm up, we naturally have to consider two cases.

Case IIa: rank(N) = 1, i.e. N/ Tor(N) is infinite cyclic.

Surprisingly, it takes quite a bit of work to show that in fact Tor(N) must be trivial in
this case. This will be shown in Proposition 3, Section 4.
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Case IIb: rank(N) > 1.

Then our calculations above show that the map M → K(N, 1) is an integral homology
isomorphism. Therefore, N is torsionfree of rank 3 by Lemma 4. This implies exactly as
in the warm up that N is one of the Heisenberg groups.

4. Proofs of the Propositions

We have to fill the gaps in the proof of Theorem 1. Recall that M is a closed orientable
3-dimensional Poincaré complex whose fundamental group allows a maximal nilpotent
quotient N . We consider the fibration

M ′ −→M −→K(N, 1)

induced from the quotient map π1M → N .

Case I: N is a finite group.

Then we need to prove that H2(M
′)N = 0 which is the conclusion of Proposition 1.

Proof. Set P := H1(M
′) which is a finitely generated abelian group. To show H2(M

′)N =
0 note that by Poincaré duality H2(M

′) ∼= H1(M ′) ∼= P ∗. From PN = 0 we conclude
that (P ∗)N = 0 and thus

(P ∗)N = H0(N ; P ∗) ∼= Ĥ−1(N ; P ∗) ∼= H1(N ; P ∗∗),

see [1, p.134 and p.148, exercise 3]. Now P ∗∗ ∼= P/ Torsion is a quotient of P and by
Lemma 7 it still satisfies (P ∗∗)N = 0. By Corollary 6 we get H2(M

′)N
∼= (P ∗)N

∼=
H1(N ; P ∗∗) = 0.

Case II: N has infinite order.

Now Hi(M
′) = 0 for all i ≥ 3 and Poincaré duality gives

H2(M
′) = H2(M ; Z[N ]) ∼= H1(M ; Z[N ]).

Our fibration gives rise to a short exact sequence

0 −→H1(N ; Z[N ]) −→H1(M ; Z[N ]) −→H0(N ; H1(M ′; Z[N ])) −→ . . .

The right hand term is the fixed point set of the (diagonal) action of N on the module
H1(M ′; Z[N ]) ∼= H1(M ′)⊗Z Z[N ]. By [1, p.69] this is a free N -module and since N is an
infinite group there are no nontrivial fixed points. Therefore, H2(M

′) ∼= H1(N ; Z[N ]).

Lemma 8. Let T be a finite normal subgroup of a group N . Then for all i ≥ 0 there is
an isomorphism H i(N ; Z[N ]) ∼= H i(N/T ; Z[N/T ]).

Proof. Consider the group extension 1→ T → N → N/T → 1 which gives rise to a Serre
spectral sequence

Ep,q
2 = Hp(N/T ; Hq(T ; Z[N ])) =⇒ Hp+q(N ; Z[N ]).
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The Ep,q
2 -terms vanish for q > 0 because T is a finite group and Z[N ] is a free T -module.

To prove the lemma it is enough to show that the fixed point set of T on the module
Z[N ] is isomorphic (as N/T -module) to the group ring Z[N/T ]. This isomorphism is the
multiplication map

·(
∑

t∈T

t) : Z[N/T ] −→Z[N ]

which is a N/T -map since the element we are multiplying with lies in the center of Z[N ].
An easy calculation shows that this map has image equal to the fixed point set Z[N ]T . It
is injective because the composition with the canonical projection Z[N ]→ Z[N/T ] gives
multiplication by the order of T which is clearly injective on Z[N/T ].

Applying this lemma for i = 1 to the torsion subgroup T := Tor(N) of our nilpotent
group N , we can finish our calculation of H2(M

′) because N/T is a Poincaré duality
group by Lemma 4. Moreover, the homology groups Hi(G; Z[G]) vanish for any group
except for i = 0 where one always gets Z. Thus we obtain

H2(M
′) ∼= Hrank(N)−1(N/T ; Z[N/T ]) ∼=

{
Z if rank(N) = 1,

0 else.

which finishes the proof of Proposition 2.

Case IIa: rank(N) = 1, i.e. N/T is infinite cyclic.

We have to prove the following

Proposition 3. In this situation one must have T = 1.

Proof. We know that both groups H2(M
′) and H2(M) ∼= H1(M) ∼= H1(N) are infinite

cyclic.

Lemma 9. The covering map M ′ →M induces multiplication by |T | on H2.

Proof. Consider the commutative diagram

H2(M ; Z[N ])
∩[M ]
←−−−

∼=
H1(M ; Z[N ]) ←−−−

∼=
H1(N/T ; Z[N/T ])

∩[S1]
−−−→

∼=
H0(Z; Z[Z])

yǫN

yǫN

yǫN/T ∼=

yǫZ

H2(M ; Z)
∩[M ]
←−−−

∼=
H1(M ; Z)

·|T |
←−−− H1(N/T ; Z)

∩[S1]
−−−→

∼=
H0(Z; Z)

The multiplication by |T | at the bottom line occurs because ǫN (
∑

t∈T t) = |T | which
has to be taken into account when applying the isomorphism of Lemma 8. The above
diagram finishes the proof since the covering map M ′ →M induces the same map on H2

as the augmentation map ǫN : Z[N ]→ Z on the left hand side.
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Looking back to the spectral sequence for the fibration M ′ −→M
f
−→K(N, 1) we may now

conclude that H2(N) is cyclic of order |T |, generated by the image of f∗. Moreover, the
commutative diagram

H1(M)
∩[M ]
−−−→

∼=
H2(M)

∼=

xf∗

yf∗

H1(N)
∩f∗[M ]
−−−−→ H2(N)

shows that, with z ∈ H1(N) ∼= Z a generator, the map

. ∩ z : H3(N) −→H2(N) ∼= Z/|T |

is an epimorphism. Now consider the extension

1→ T
i
−→N −→N/T ∼= Z→ 1.

The Wang sequence gives a short exact sequence

0 −→H3(T )N/T −→H3(N)
c
−→H2(T )N/T −→0.

Moreover, the composition H3(N)
c
−→H2(T )

i∗−→ H2(N) is given by the cap-product with
the class ±z ∈ H1(N). But we know that this composition is an epimorphism. In
particular, the inclusion map i induces also an epimorphism i∗ : H2(T ) → H2(N) and
thus H2(T ) ∼= H3(T ) contains an element of order |T |. Then the finite group T has
3-periodic cohomology and is therefore trivial ([1, p.159, exercise 1]).

Proof of Theorem 2. Again we only have to prove that (5) implies (1). Let M be a closed
orientable 3-dimensional Poincaré complex whose fundamental group allows a maximal
torsionfree nilpotent quotient N . Consider again the fibration

M ′ −→M −→K(N, 1)

induced from the quotient map π1M → N . Observe that by assumption H1(M
′)N is

a finite group. If one now considers rational homology throughout (e.g. Dwyer’s result
holds true in this case) then the arguments from the proof of Theorem 1 show that N
is trivial, infinite cyclic or a 3-dimensional rational Poincaré duality group. In the last
case one sees easily that N is a Heisenberg group. Note that all the details about certain
degrees etc. are not necessary here since N is torsionfree to start with.
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