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Abstract. We describe a nonsingular hermitian form of rank 4 over the group
ring Z[Z] which is not extended from the integers. Moreover, we show that under
certain indefiniteness asumptions, every nonsingular hermitian form on a free Z[Z]-
module is extended from the integers. As a corollary, there exists a closed oriented
4-dimensional manifold with fundamental group Z which is not the connected sum
of S1 × S3 with a simply-connected 4-manifold.

1. Introduction

Let A := Z[x, x−1] be the group ring of the infinite cyclic group (generated by the
element x) which is equipped with the involution x 7→ x−1. With t := x + x−1, the
matrix

L :=









1 + t + t2 t + t2 1 + t t
t + t2 1 + t + t2 t 1 + t
1 + t t 2 0

t 1 + t 0 2









describes a nonsingular hermitian form (extended from Z[t]) on a free A-module of
rank 4. We will prove the following

Theorem 1. L is not extended from the integers.

Surprisingly, this seems to be the first example of such a form. ¿From the algebraic
point of view, it is a classical problem to decide which forms over the polynomial ring
R[t] are extended from the ground ring R. There are however new difficulties in
extending to the ring R[x, x−1]. For example, over Z[t] the indefinite form [ t 1

1 0 ] is
not extended from the integers (consider the values t = 0, 1 giving different types),
but its extension to A is extended from Z since t = x + x−1. We found the form L
in [4], [5, p.474] as the first member of a family of forms Lm of rank 4m over Z[t].
In his paper, Quebbemann shows that for m ≥ 2 the Lm are not extended from the
integers. His argument uses the evaluation maps

Z[t]
ev(z)
−−→ Z, z ∈ Z

for z = 0, 1. He shows that Lm(0) is the standard form whereas Lm(1) is the (non-
standard but well known) definite form Γ4m and thus Lm cannot be extended.
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This argument breaks down for the group ring A because the evaluation maps
extend to A only for t = ±2. Moreover, for L = L1 all evaluation maps ev(z) lead to
the 4-dimensional standard form. Indeed, since all L(z) have rank 4 and odd type it
is enough to check this over the real numbers R, where it follows from the existence
of the homotopy L = L(t).

The following result shows that under certain indefiniteness assumptions, a form
over A is indeed extended from the integers. Let ǫ : A → Z be the ring homomorphism
which sends x±1 to 1.

Theorem 2. Let h be a nonsingular hermitian form on a free A-module of rank r
and denote by s the signature of the form ǫ(h) on Z

r. If r−|s| ≥ 6 then h is induced
from the form ǫ(h).

It is attractive to speculate that the same result holds under the weakest possible
indefiniteness assumption r > |s|.

From our topological point of view, the question whether a form is extended form
the integers arose from the study of closed oriented 4-manifolds with fundamental
group Z. For example, one knows that any nonsingular hermitian form on a finitely
generated free A-module can be realized as the intersection form on π2 of such a
manifold M . Moreover, there are at most two 4-manifolds realizing a given form, see
[2] for the precise formulation. Comparing this classification with the one for simply
connected 4-manifolds [2], we obtain the following corollary from our two theorems
above.

Corollary . (1) There exists a closed oriented topological 4-manifold with infinite
cyclic fundamental group which is not homotopy equivalent to the connected sum of
S1 × S3 with a closed simply-connected 4-manifold.
(2) If M is a closed oriented topological 4-manifold with infinite cyclic fundamental
group and with b2(M) − |σ(M)| ≥ 6 then M is homeomorphic to the connected sum
of S1 × S3 with a unique closed simply-connected 4-manifold. In particular, M is
determined up to homeomorphism by its second Betti number b2(M), its signature
σ(M), and its Kirby-Siebenmann invariant.

Note that this contradicts [3, Thm. 1.1].

2. L is not extended

We briefly recall the notion of extended forms. We restrict ourselves to the case of
forms over finitely generated free modules where one can describe forms by matrices.
For a ring R with involution¯one defines an involution on n×n-matrices M = (mi,j)
by M := (m̄j,i) and then a sesquilinear [hermitian] form on a free R-module of rank n

is given by such a matrix M [with M = M ]. If ϕ : R → S is a homomorphism of rings
with involution and M describes a [hermitian] form over R then ϕ(M) := (ϕ(mi,j))
determines a [hermitian] form over S which is called extended from R (via ϕ). For
example, for any ring R with unit 1 there is a homomorphism of rings with involution
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ϕ : Z → R given by ϕ(1) := 1. A form over R is said to be extended from the integers
if it is extended from Z via this map. If R = Z[G] is a group ring with the involution
ḡ := g−1 for g ∈ G, one can further consider the augmentation homomorphism

ǫ : Z[G] −→Z

sending all g ∈ G to 1.
It follows from ǫ◦ϕ = idZ that if a form M over Z[G] is extended from the integers

then M must be extended from the form ǫ(M).
Let us now come back to the case R = A = Z[x, x−1] (and x̄ := x−1) with the

form given by L (extended from Z[t] to A via the map ϕ which sends t to x + x̄).
One easily computes det(L) = 1 and thus L is in fact nonsingular. Applying the
augmentation ǫ to L shows that if L was extended from the integers then it must
be equivalent over A to the standard form (given by the identity matrix 11). The
fact that ǫ(L) is equivalent to 11 can be either seen by a direct calculation or by
the argument given in the introduction which uses the homotopy L(t). Note that L
contains a vector (namely the first basis vector) of length 1 + t + t2. Therefore, the
following Lemma implies our Theorem.

Lemma 1. The standard form on An does not contain a vector of length 1 + t + t2.

Proof. We first introduce the notation

|v| :=
n

∑

i=1

vi · v̄i

for the length (w.r.t. the standard form) of a vector v = (vi) ∈ An. Now suppose
that |v| = 1 + t + t2 and note that if vi =

∑

j zi,j · x
j with integers zi,j then

3 + (x + x−1) + (x2 + x−2) = 1 + t + t2 = |v| =
n

∑

i=1

(
∑

j,k

zi,jzi,k · x
j−k).

Looking at the coefficient at x0 this implies that 3 is the sum of the squares of all
zi,j . Thus v has all together precisely 3 non-vanishing coefficients which all must be
equal to ±1. After possibly re-ordering the components of v we are reduced to the
following cases:

1. v = (v1, v2, v3, 0, . . . , 0), vi = ±xji .
One easily checks that |v| = 3 which is a contradiction.

2. v = (v1, v2, 0, . . . , 0), v1 = αxa + βxb, v2 = ±xc. (α, β are signs ±1 and a, b, c ∈
Z.) Again one easily checks that |v| = 3 + αβ(xa−b + xb−a), a contradiction.

3. v = (v1, 0, . . . , 0), v1 = αxa + βxb + γxc. (α, β, γ are signs ±1 and a < b < c are
integers.) In this case one obtains

|v| = 3 + αβ(xb−a + xa−b) + γβ(xc−b + xb−c) + γα(xc−a + xa−c).
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In order to avoid a direct contradiction we must have b−a = c− b = 1 and thus
c − a = 2. This implies that γ = α and thus the coefficient of (x + x−1) on the
right hand side is ±2, a final contradiction.

3. Proof of Theorem 2

Let h′ denote the A-valued hermitian form induced from ǫ(h). We want to show
that h and h′ are isomorphic. We first observe that h and h′ are forms on free
A-modules of the same rank and signature. The idea of the proof is to first allow
stabilization with hyperbolic forms and then cancel these additional forms using the
indefiniteness assumption. The first step uses computations of Wall’s L-groups and
the second the Bass cancellation theorem. One has to observe that the categories
of quadratic forms used by Wall and Bass agree for free modules, see [1, I (4.4)]. In
our notation, a hermitian form h comes from such a quadratic form if h = q + q̄
for some sesquilinear form q. Moreover, on a free module over a group ring of a
group without elements of order 2, the hermitian form h completely determines its
underlying quadratic form. Thus the proof of Theorem 2 splits naturally into two
cases:
Case 1: h is quadratic, i.e. h = q + q̄.
In this case, h′ also determines a quadratic form and we get two elements of the
quadratic surgery obstruction group L0(A). This group is given by the Shaneson
splitting theorem as

L0(A) ∼= L0(Z) ⊕ L3(Z) = L0(Z) ∼= Z.

Therefore, the isomorphism classes of such forms (after stabilizing by hyperbolic forms
on free modules) are distinguished just by the ordinary signature. Hence h and h′

are stably isomorphic. Now we can apply the cancellation theorem of Bass [1, IV
(3.6)] to conclude that h ∼= h′. More precisely, in the notation of [1, IV (3.1)] we
have R = A = Z[Z] and thus the subring R0 genererated by all norms a · ā, is just
Z[t] ⊂ A: The equation

(x + 1)(x̄ + 1) − xx̄ − 1 = x + x̄ = t

shows that t ∈ R0. It is clear that R0 is contained in the fixed ring of the involution
and that this fixed ring is generated by the elements xn +x−n. Finally, one shows by
induction that these elements lie in fact in Z[t].

The maximal dimension d of the ring R0 = Z[t] equals dim Spec(Z[t]) = 2 because
every prime ideal is the product of maximal ideals.

By our assumption and the classification of indefinite integral forms h′ splits off
3 = d+1 hyperbolic forms. Therefore, the assumptions in Bass’ cancellation theorem
are satisfied.

Case 2: h is not quadratic.
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Then we consider h and h′ as elements in the symmetric surgery group L0(A) which
is the Grothendieck group of nonsingular hermitian forms on f.g. free A-modules.

The Ranicki splitting theorem gives

L0(A) ∼= L0(Z) ⊕ L3(Z) = L0(Z) ∼= Z.

Therefore, there exist metabolic forms M and M ′ of the same rank such that

h ⊥ m ∼= h′ ⊥ m′.

Recall that by definition a metabolic form has a free R-basis {ei, fi}, i = 1, . . . , n
such that

m(ei, ej) = 0 and m(ei, fj) = δi,j .

The next step is to show that h and h′ are in fact stably isomorphic. For this we
need some preparations:

Lemma 2. Over any ring R, a metabolic form m as above is the orthogonal sum of
rank 2 metabolic forms.

Proof. Given the above basis {ei, fi} we define a new basis {ei, f
′

i} by

f ′

i := fi −
∑

j>i

m(fi, fj) · ej.

Then one easily checks that the restrictions of m to 〈ei, f
′

i〉 decompose m into an
orthogonal sum of rank 2 metabolic forms.

For a ring R with involution consider the Tate-group

T (R) := {a ∈ R | a = ā}/〈a + ā〉

If λ is a hermitian form on some R-module M , we may consider the group homomor-
phism

Sq(λ) : M → T (R), m 7→ λ(m, m).

This map becomes a homomorphism of R-modules if we define the R-action on T (R)
by a 7→ r · a · r̄, r ∈ R, a ∈ T (R). Note that if M is a free R-module then λ comes
from a quadratic form if and only if Sq(λ) = 0.

Lemma 3. Let λ be a hermitian form on some R-module X such that Sq(λ) is
surjective. Then for any metabolic form m there is an isomorphism

λ ⊥ m ∼= λ ⊥ hyperbolic

Proof. By Lemma 2 it is enough to consider the case where m has a basis {e, f}
with m(e, e) = 0, m(e, f) = 1 and m(f, f) =: −a. By assumption, there is an
element x0 ∈ X such that λ(x0, x0) = a since one can always perform a base change
f 7→ f + r · e. Define an automorphism Φ of the R-module X ⊕ R2 by the formulas

Φ(x) := x − λ(x, x0) · e for x ∈ X, Φ(e) := e and Φ(f) := x0 + f.
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Then the form λ ⊥ m restricted to Φ(X) is isomorphic (via Φ) to (X, λ) and restricted
to Φ(R2) it is hyperbolic: (λ ⊥ m)(x0+f, x0+f) = λ(x0, x0)+m(f, f) = 0. Moreover,
these two subspaces are perpendicular which proves our claim.

For our group ring A = Z[Z] we have T (A) = Z/2, generated by 1. Since we are in
the case where h is not quadratic we know that Sq(h) 6= 0 is surjective. The same is
true for h′ and thus by Lemma 3 we conclude that h and h′ are stably isomorphic.
We denote the common stabilized form by λ.

Lemma 4. The restriction of λ to the kernel of the A-homomorphism Sq(λ) is qua-
dratic.

This Lemma finishes the proof of Theorem 2 because we can now apply Bass
cancellation to this restriction. More precisely, by our indefiniteness asumption λ,
and thus also its restriction to K := Ker(Sq(λ)), contains enough hyperbolic planes
in order to satisfy the assumptions of [1, IV (3.5)]. In this corollary Bass shows
that the automorphisms of the hyperbolic summand together with all transvections
act transitively on the set of hyperbolic pairs in K. But these transvections can be
extended to automorphisms of the whole module and may be thus used to cancel all
additional hyperbolic summands.

Proof of Lemma 4. First observe that if K was a free A-module then we were done
because Sq(λ) vanishes on K by definition. In general, the obstruction for (K, λ)
being quadratic lies in the Tate-group of hermitian forms modulo those of the form
q+ q̄. Since this is a F2-vector space, one checks that (K, λ) is a quadratic form if and
only if (K/2, λ) is a quadratic form over the ring A/2 = F2[Z]. We claim that K/2 is
a free A/2-module which implies our lemma: just observe that λ is the stabilization
of the form h′ by a hyperbolic form and is thus induced from the integers. From the
classification of indefinite integral forms we may conclude that λ is the orthogonal
sum of standard forms (±1) with respect to some basis {b1, . . . , bn}. In particular,
Sq(λ)(bi) = 1 for all i. This shows that K/2 ∼= (A/2)n−1 ⊕ I where I denotes the
augmentation ideal in F2[Z]. But since we are working with the infinite cyclic group
(generated by x) we know that the augmentation ideal is a free module (generated
by x − 1).
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