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Abstract. We present new results, announced in [T], on the classical
knot concordance group C. We establish the nontriviality at all levels
of the ‘n-solvable’ filtration

· · · ⊆ Fn ⊆ · · · ⊆ F1 ⊆ F0 ⊆ C
introduced in [COT]. Recall that this filtration is significant due to
its intimate connection to tower constructions arising in work of A.
Casson and M. Freedman on the topological classification problem for
4-manifolds , and due to the fact that all previously known concordance
invariants are reflected in the first few terms in the filtration. In [COT]
nontriviality at the first new level n = 3 was established. Here we prove
the nontriviality of the filtration for all n, hence giving the ultimate
justification to the theory.

A broad range of techniques are employed in our proof, ranging from
cut-and-paste topology to analytical estimates. We use the Cheeger-
Gromov estimate for von Neumann ρ-invariants, a deep analytic result.
We also introduce a number of new algebraic arguments involving non-
commutative localization and Blanchfield forms. We have attempted
to make this paper accessible to a reader with only passing knowledge
of [COT].

1. Introduction

A knot is a smoothly embedded circle in 3-space. In [FM], Fox and Milnor
introduced the notion of a slice knot, as a knot which is the intersection
of 3-space with a 2-sphere smoothly embedded in 4-space. They showed
that an isolated PL singularity of a surface in a 4-manifold can be resolved
smoothly if and only if the link of the singularity is a slice knot.

The question of which knots are slice knots lies at the heart of the classi-
fication of 4-dimensional manifolds since it is an attempt to bound a knot
in a 3-manifold N by an embedded disk in a 4-manifold M (with boundary
∂M = N). The knot slice problem is the simplest case (M,N) = (D4, S3).
The classification of higher-dimensional manifolds can largely be reduced
to algebra via the techniques of surgery and the s-cobordism theorem. A
key step in this reduction is representing a k-dimensional homotopy class
of a 2k-dimensional manifold M2k by an embedded k-sphere. A crucial
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tool in completing this program is the Whitney Trick, which allows for the
geometric elimination of a pair of self-intersection points of an immersed
sphere Sk # M2k if this pair cancels algebraically, using certain embedded
2-disks called Whitney disks. However when k = 2 the Whitney trick, and
hence the entire program, fails because the immersed Whitney disk itself
has potentially essential singularities; the problem of embedding the Whit-
ney disks is just as difficult as the original problem. Thus it was that in the
early 80’s the question of which knots are slice knots became the central
problem in topological 4-manifolds. Moreover, the failure of the Whitney
trick suggested a hierarchy of algebraic obstructions. More precisely, the
singularities of the Whitney disks can be viewed as “second-order” alge-
braic obstructions to the original program. If these in turn vanish, then
the pairs of intersections of the first Whitney disks have their own (second-
order) Whitney circles and disks whose self-intersections could be viewed
as “third-order” obstructions, leading to the notion of a Whitney tower of
height n, considered by A. Casson and M. Freedman.

However, the actual existence of an infinite sequence of non-trivial al-
gebraic obstructions to finding Whitney towers of height n has remained
unconfirmed until the present paper. Indeed, the following result is a direct
consequence of Proposition 1.3 and Theorem 1.4:

Theorem 1.1. For any positive integer n, there exists an immersion D2 #
B4 whose homotopy class (relative its boundary knot) can be represented
by a smooth Whitney tower of height n but cannot be represented by any
smooth or even topological Whitney tower of height n+ 1.

It is fascinating that it took (for us at least!) techniques of von Neumann
algebras and other deep analytical results to achieve this topological result.

The study of slice knots is facilitated by a natural group structure. Mil-
nor and Kervaire observed that the connected sum operation gives the
set of all knots, modulo slice knots, the structure of an abelian group,
now called the smooth knot concordance group. Despite its connection to
the classification problem, even 40 years after their work, the concordance
group remains far from being understood. Using (locally flat) topological
embeddings, one gets the topological knot concordance group C which is
a quotient of its smooth partner but is also very much unknown. This
paper gives new information about both of these groups, using techniques
of noncommutative algebra and analysis.

In the late 60’s Levine [L] defined an epimorphism from C to an algebraic
concordance group that he showed was isomorphic to Z∞ ⊕ Z∞

2 ⊕ Z∞
4 ,

given by the Arf invariant, certain discriminants and twisted signatures
associated to the infinite cyclic cover of the knot complement. In the early
70’s Casson and Gordon [CG] defined new invariants via dihedral covers;
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these were used to show that the kernel of Levine’s map has infinite rank.
See [Li] for a more detailed history.

In [COT], Kent Orr and the authors used arbitrary solvable covers of
the knot complement to exhibit a new filtration of C

· · · ⊆ Fn ⊆ · · · ⊆ F1 ⊆ F0.5 ⊆ F0 ⊆ C.

This filtration is significant for several reasons. Most importantly, it suc-
cessfully mirrors the constructions of towers of Whitney disks as discussed
above. Similarly it mirrors the closely-related approach using Gropes, uti-
lized by Freedman and Quinn in their foundational book on 4-manifolds
[FQ]. It also corresponds well to the surgery-theoretic approach of Cappell
and Shaneson. The precise connections between the filtration and these
other notions were formulated and proven in [COT, Thm.8.11,Thm.8.12,
Thm.8.4,Thm.8.8]. In addition, it was there shown that the filtration “con-
tains”, in its associated graded quotients of low degree, all of the previously
known concordance invariants. It was also confirmed that there is indeed
new information in the filtration. In particular, it was shown in [COT2]
that F2/F2.5 contains an infinite rank summand of concordance classes of
knots not detectable by previously known invariants. However, the crucial
question of whether or not the filtration was non-trivial for larger n was
left open.

The primary result of the present paper is to prove nontriviality of the
filtration for all n.

To explain our results in more detail, recall that for each positive half-
integer n, the subgroup Fn consists of all (n)-solvable knots. F0 consists of
the knots with Arf-invariant zero, and F0.5 consists of the algebraically slice
knots (i.e. knots in the kernel of Levine’s map). In general, (n)-solvability is
defined using intersection forms in (n)-solvable covering spaces of certain
4-manifolds (the definition is reviewed in Section 4). There is a much
easier (for an introduction!), closely related filtration that is geometrically
more intuitive, namely a filtration defined using Gropes. Denote by Gn the
subgroup of C consisting of all knots that bound a Grope of height n in
D4. A Grope is a 2-complex that approximates the 2-disk. The precise
definitions are reviewed in Section 3 but a grope of height 2 is shown in
Figure 1.2 and the general concept is quite simple: Gropes of larger and
larger height are on one hand a geometric version of the derived series of a
group and on the other hand, they form a better and better approximation
to the desired slice disk for a given knot: There is always a (Seifert) surface
Σ bounding the knot and if some basis of curves on Σ bounds disjointly
embedded disks, then Σ can be turned (or surgered) into a slice disk.
However, the question now iterates, namely the curves on Σ may bound
merely surfaces (rather then disks) and hence we find a grope of height
2 as in Figure 1.2. In this paper we use exclusively symmetric gropes,
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corresponding to the derived series of a group (leading to solvable groups),
see [T] for other notions of gropes and their applications. For example,
the much simpler theory of the lower central series (leading to nilpotent
groups) gives, in its incarnation via half-gropes, a geometric interpretation
of Vassiliev invariants and the Kontsevich integral of knots.

K

Σ

Figure 1.2. A Grope of height 2.

The filtrations of C by solvability and by Gropes are not the same but the
following result from [COT] shows they are closely correlated and so the
reader may (in this introduction) safely consider only the Grope filtration.

Proposition 1.3. [COT, Theorem 8.11] If a knot K in S3 bounds a Grope
or Whitney tower of height (n + 2) in D4 then K is (n)-solvable. In par-
ticular, Gn+2 ⊆ Fn.

The main result of this paper, and in some sense the ultimate justification
for the entire theory, is as follows.

Theorem 1.4. For any n ∈ N0, the quotient groups Fn/Fn.5 contain ele-
ments of infinite order. Similarly, the groups Gn+2/Gn+2.5 contain elements
of infinite order. In fact, the groups Gn+2 contain knots that have infinite
order modulo Fn.5.

We note that our construction of examples is all done in the smooth
category so that we actually also prove the corresponding statements about
the smooth knot concordance group, that is, our examples bound smooth
(n + 2)-Gropes but do not bound any smoothly (or even topologically)
embedded (n+ 2.5)-Grope.

For n = 0, examples of our theorem can be detected by the Levine-
Tristram signature obstructions [COT, Remark 1.13], for n = 1 one can use
Casson-Gordon invariants (that vanish on F1.5 by [COT, Theorem 9.11])
and for n = 2 this is the main result of [COT, Theorem 6.4]. The results
for n > 2 are new.

The proof of this theorem turns out to be difficult, actually impossible
(for us) without introducing a new tool from analysis. The main problem
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is the higher-order obstruction theoretic nature of all known invariants, a
problem that already arises in using Casson-Gordon invariants. In a nut-
shell, there are higher-order signature invariants that obstruct the existence
of a Grope of height n.5 extending a fixed given Grope of height n. But,
in order to show that a knot does not bound a Grope of height n.5 one
then has to show that this signature is nontrivial for all possible Gropes of
height n bounding the knot. This turns out to be a formidable task. It was
resolved by Casson-Gordon and in [COT, Section 6] by finding knots for
which, roughly speaking, there is a unique Grope of height n, at least as far
as the relevant algebra can see. This works for n = 1, 2 but we have been
unable to find such knots for n > 2. In this paper we use analytic tools to
resolve the issue, along with a deep new result using the noncommutative
localization techniques of [COT], and ideas from [COT2] to construct the
relevant knots, with a little more care necessary to make sure that they
lie in Gn+2, rather than just in Fn. The new analytic methods show that
these knots are not (n.5)-solvable.

To see why analysis can play a role, recall that the signature that turns
out to be relevant for n > 1 is in fact a (real valued) von Neumann signa-
ture, associated to a certain intersection form on a 4-manifold constructed
from a Grope of height n. This 4-manifold has boundary MK , the 0-surgery
on the given knot K. The main information about the Grope is encoded
by the homomorphism

φ : π1MK −→ π

induced by the inclusion of the boundary into the 4-manifold. Here π is
the quotient of the 4-manifold group by all (n+1)-fold commutators. Since
the Grope is variable, we do not have any information on the group π, in
particular, we do not know any interesting representations, except for the
canonical one on `2(π). That is why von Neumann algebras enter the story.

By the von Neumann index theorem, the difference between the von
Neumann signature and the usual (untwisted) signature of this 4-manifold
is equal to the invariant ρ(MK , φ) of the boundary. This von Neumann
ρ-invariant is the difference between the von Neumann η-invariant and the
untwisted η-invariant. It is a real-valued topological invariant, depending
only on the covering determined by φ and will be explained in detail in
Section 2.

Thus the main question of how to control the von Neumann signatures of
the 4-manifolds associated to all possible Gropes of height n with boundary
K, translates into the question of how to control the invariants ρ(MK , φ)
for all possible φ. Analysis enters prominently because of the following
estimate of Cheeger and Gromov [CG2] for the von Neumann ρ-invariants

(1.5) ∃ CM > 0 such that |ρ(M,φ)| < CM ∀φ
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where M is a closed oriented manifold of odd dimension. Thus, for any
fixed 3-manifold, the set of all possible ρ-invariants is bounded in absolute
value. In addition to the original paper, Ramachandran’s paper [R] is
a good source to learn about the estimate in more generality (see our
Section 2).

It remains to be seen whether our filtration can be used to fully under-
stand the topological knot concordance group C. The main open question
might be whether a knot in the intersection of all Fn must be topologically
slice. The other main remaining open questions about our filtrations are

Conjecture . For any n ∈ N0, the quotient groups Fn/Fn.5 have infinite
rank. Moreover, for n > 0, the groups Fn.5/Fn+1 are nontrivial.

The first part of the conjecture is true for n ≤ 2: n = 0 is verified using twist
knots and the Seifert form obstructions, for n = 1 this can be established
by using examples due to Casson-Gordon, and n = 2 is the main result of
[COT2].

Outline of the proof of Theorem 1.4. We start with the 0-surgery
M on a fibred genus 2 ribbon knot R (which bounds an embedded disk
in B4 and is thus (n)-solvable for all n). We prove the existence of a
certain collection of circles η1, . . . , ηm in the n-th derived subgroup of π1M
that forms a trivial link in S3. We then modify R (we call this a genetic
infection) using a certain auxiliary knot J (called the infection knot) along
the circles η1, . . . , ηm (called axes).

η1 . . . ηm J J

R R R(η1, . . . , ηm, J)

. . .

Figure 1.6. Genetic infection of R by J along ηi

This language, introduced in [COT2], just expresses a standard construc-
tion, where the ηi bound disjointly embedded disks in S3 and the knot J is
tied into all strands of R passing through one of these disks as illustrated
in general in Figure 1.6 and in a particular case in Figure 1.7, where n = 1,
m = 2.

With a good choice of an infection knot J , we can make sure that all
resulting knots K = R(η1, . . . , ηm, J) bound Gropes of height (n + 2), see
Theorem 3.8.

If the von Neumann signature corresponding to π1(MK) → Z of J is big-
ger than CM (the “infection is strong enough”) then the Cheeger-Gromov
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η1 η2

J J

R K = R(η1, η2, J)

Figure 1.7. An example for n = 1

estimate (1.5) shows that K is not (n.5)-solvable, provided that for all (rel-
evant) homomorphisms φ, one of the axes ηi is mapped nontrivially. The
precise statement is given in Theorem 4.2.

The last condition on the axes ηi turns out to be more subtle than ex-
pected, complicated by the fact that π1M

(n)/π1M
(n+1) may not be finitely

generated for n > 1. Fortunately, it turns out that we can use the higher
order Blanchfield forms from [COT] to carefully construct axes ηi with the
desired property, see Theorem 4.3.

Our paper is organized as follows: In Section 2, we give a survey of the
analytical results surrounding the von Neumann ρ-invariant; no originality
is claimed. In Theorem 3.8 we construct a large class of knots that bound
Gropes of height (n + 2) in the 4-ball. Theorems 4.2 and 4.3 together
imply that many of these knots are not (n.5)-solvable. Therefore, our main
result Theorem 1.4 follows. Section 5 reviews from [COT] some algebraic
topological results, higher-order Alexander modules and their Blanchfield
forms, used for Theorem 6.3 that is at the heart of the proof of Theorem 4.3.

This paper uses many notions and ideas from [COT]. However, we have
made a conscious effort to include here all relevant definitions, and we
stated all results needed explicitly, with precise references. We hope that,
as a consequence, most readers will be able to enjoy this paper indepen-
dently of [COT]. Those who want to see the proofs of the stated results
will find them easily in [COT].

Acknowledgements: It is a pleasure to thank Bruce Driver and Lance Small
for discussions on some of the analytic, respectively algebraic, aspects of
the paper, and Kent Orr for several useful conversations.
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2. Von Neumann ρ-invariants

For the convenience of the reader, this section gives a short survey of
the more analytic aspects of the invariant that is used in the rest of the
paper. Throughout the section we work with the signature operator on 4-
dimensional manifolds (and their boundary), even though everything works
as well on 4k-manifolds. One needs to replace p1/3 by Hirzebruch’s L-
polynomial (and the 1-forms below by (2k − 1) forms on the boundary).
In fact, most of our discussion applies to all Dirac type operators in any
dimension, instead of just the signature operator.

The signature theorem for manifolds with boundary. Let W be a
compact oriented Riemannian 4-manifold with boundary M and assume
that the metric is a product near the boundary (or at least that the first
two normal derivatives of the metric vanish on M). The Atiyah-Patodi-
Singer index theorem for the case of the signature operator implies the
following signature theorem [APS, Thm.4.14]

(2.1) σ(W ) =

∫
W

p1(W )/3− η(M)

where σ(W ) is the signature of the intersection form on H2(W ), p1(W )
is the first Pontrjagin form of the tangent bundle (which depends on the
metric), and η(M) is a spectral invariant of the boundary. It is the value
at s = 0 of the η-function

(2.2) η(s) =
∑
λ6=0

(signλ)|λ|−s.

Here λ runs through the nonzero eigenvalues of the signature operator D
on M . More precisely, D is the self-adjoint operator on even differential
forms on M defined by ±(∗d − d∗) where the Hodge ∗-operator depends
on the metric. The η-function is defined by analytic continuation and it
turns out that it is holomorphic for Re(s) > −1

2
. In fact, one can get the

explicit formula, used below,

(2.3) η(2s) =
1

Γ(s+ 1/2)

∫ ∞

0

ts−1/2 trace(De−tD2

)dt,

where the trace class operator De−tD2
is defined by functional calculus and

the Gamma function is given by

Γ(s) =

∫ ∞

0

ts−1e−tdt.

Using Hodge theory, [APS, Prop.4.20] show that for the purpose of calculat-
ing the η-function, one may restrict to the operator d∗ acting on the space



KNOT CONCORDANCE AND VON NEUMANN ρ-INVARIANTS 9

dΩ1(M). As pointed out by [APS] this translation leads to the following
suggestive interpretation of η(M). Define a quadratic form Q by

(2.4) Q(α) :=

∫
M

α ∧ dα, α ∈ Ω1(M)

and observe that Q has radical ker(d) and hence gives a form on dΩ1(M).
Moreover, for Eigenvectors dα of d∗, the corresponding Eigenvalue has
opposite sign as Q(α). Hence one can formally interpret the correction
term −η(M) in (2.1) as the “signature” of the quadratic form −Q. Note
that Q does not depend on the metric but since Q is defined on the infinite
dimensional space, the metric is used to give the proper meaning to its
signature.

Even though the above signature theorem (2.1) is what we need in this
paper, it might be good to remind the reader of the relation to the index of
the signature operator on W . In fact, the index theorem for the signature
operator DW on W reads as follows [APS, 4.3]

(2.5) index(DW ) =

∫
W

p1(W )/3− (h+ η(0))/2

where h is the dimension of the space of harmonic forms on M and η(0) is
the value at s = 0 of the η-function for the signature operator on all forms
on M . Since this operator preserves the parity of forms and commutes with
the Hodge ∗-operator, the above η-function is just twice the η-function
(on even forms) considered in the signature theorem. This explains the
disappearance of the factor 1/2 from (2.5). Moreover, by considering L2-
solutions on W with an infinite cylinder attached, [APS, 4.8] show that

index(DW ) = σ(W )− h

which explains how (2.1) is derived from (2.5).
In [CG1] Cheeger and Gromov were looking for geometric conditions

under which the integral term in the signature theorem is a topological
invariant. They proved the following beautiful result: Assume the open
4-manifold X admits a complete metric with finite volume whose sectional
curvature satisfies

|K(X)| ≤ 1

Assume furthermore that X has bounded covering geometry in the sense
that there is a normal covering X̃ (with covering group Γ) such that the
injectivity radius of the pull back metric on X̃ is ≥ 1 (this condition gets
weaker with the covering getting larger). Then [CG1, Thm.6.1] says that
one has a topological invariant (in fact, a proper homotopy invariant)

(2.6)

∫
X

p1(X)/3 = σΓ(X)
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where σΓ(X) is the von Neumann-, or L2-signature of the Γ-cover X̃ to
which we turn in the next section. We point out that the main step in
the proof of this theorem is an estimate for the η-invariant of 3-manifolds
(with similarly bounded geometry), compare Theorem 2.9 below. It will
imply what we called the Cheeger-Gromov estimate in our introduction.

The L2-signature theorem. Returning to a compact 4-manifold W with
product metric near the boundary, we can study twisted signatures, given
by bundles with connection over W . If the bundle is flat then these signa-
tures have again a homological interpretation (and the integral term in the
signature theorem is unchanged). A flat bundle is given by a representa-
tion of the fundamental group π1W . However, in the application we have
in mind, there are no preferred such representations mainly because π1W
is an unknown group. All we will be given is a homomorphism π1W → Γ
where Γ is usually a solvable group. Fortunately, there is a highly non-
trivial canonical representation of any group, namely on `2(Γ). It turns
out that one can twist the signature operator with this representation and
then calculate its index using von Neumann’s Γ-dimension. We used these
real numbers in [COT] to prove our main results and we gave a survey
in section 5, similar to the current one, including all relevant references.
Since then, Lück and Schick wrote [LS] where they prove that all known
definitions of von Neumann signatures agree.

There is an L2-signature theorem, analogous to (2.1) which can again be
derived from an L2-index theorem, proven for general Dirac type operators
in [R]. A more direct argument for signatures is given in [LS, Thm.3.10]
where the authors use Vaillant’s thesis to translate the right hand side of
(2.7) below to the L2-signature of the intersection pairing on L2-harmonic
2-forms on W with an infinite cylinder attached. Lück and Schick then
translate this signature into a purely homological setting obtaining the
following result: Given a compact oriented 4-manifold W together with a
homomorphism π1W → Γ one has

(2.7) σΓ(W ) =

∫
W

p1(W )/3− ηΓ(M)

Here the left hand side is the von Neumann signature of the intersection
form on H2(W ;NΓ), where NΓ is the von Neumann algebra of the group
Γ. The von Neumann η-invariant can also be defined in a straight-forward
way, using (2.3) rather then (2.2):

(2.8) ηΓ(M) :=
1√
π

∫ ∞

0

t−1/2 traceΓ(D̃e−tD̃2

)dt

Here D̃ is the signature operator on the even forms of the induced Γ-cover

M̃ of M . If kt(x, y) denotes the smooth kernel of the operator D̃e−tD̃2
then
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the above Γ-trace is given by the integral∫
F

tracex kt(x, x)dx

where F is a fundamental domain for the Γ-action on M̃ .
As before, one can alternatively use the lift of d∗ to calculate this ηΓ-

invariant. A key step in the proof of (2.7) is the following result of [CG2,
4.10].

Theorem 2.9. There is a constant C, depending only on the local geometry
of M , such that for all Γ-covers of M

|ηΓ(M)| ≤ C · volume(M)

This is also proven in [R, Thm.3.1.1] for general Dirac type operators but
there seems to be a problem for s near t in the 4-th line of equation (3.1.10).
As Bruce Driver pointed out to us, this problem can be fixed by using
an L1-estimate instead of the L∞ estimate in (3.1.10). For the signature
operator d∗, one can also carefully read pages 23 and 24 of [CG2], inserting
the symbols ∗d into the decisive definition (4.15) of the von Neumann η-
invariant. Note that Cheeger and Gromov use the operator ∗d on coexact
1-forms which is conjugate, under Hodge-∗, to d∗ on dΩ1 used above.

The von Neumann ρ-invariant. Subtracting the expressions (2.1) and
(2.7) one gets the following equation

(2.10) σΓ(W )− σ(W ) = η(M)− ηΓ(M)

which allows the following beautiful interpretation: the left hand side is
independent of the metric, whereas the right hand side does not depend on
the zero bordism W for M . As a consequence, the above expression must
be a topological invariant of M ! This argument works as long as, for a
given 3-manifold M , one can find a metric (easy) and a zero bordism (also
easy, except if it has to be over the group Γ). In fact, it suffices to find
the zero bordism over a group into which Γ embeds and this can always
be done. Alternatively, one applies (2.10) to the product M × I, equipped
with a metric inducing a path of metrics on M . Since the signature terms
vanish on the product, one concludes that the right hand side is indeed
independent of the metric.

Definition 2.11. Let M be a closed oriented 3-manifold and fix a homo-
morphism φ : π1M → Γ. Define the von Neumann ρ-invariant

ρΓ(M,φ) := η(M)− ηΓ(M)

with respect to any metric on M . If the group (or the homomorphism) is
clear from the context, we suppress it from the notation, as we already did
for ηΓ.
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It would be extremely interesting to find a combinatorial interpretation
of this von Neumann ρ-invariant. Since it does not depend on the choice
of a metric, a definition along the lines of the quadratic form Q in (2.4)
might not be out of reach. All our calculations of ρΓ are based on (2.10)
and in fact, by choosing our examples of knot carefully, we manage to
reduce the Γ-signature calculations to the case Γ = Z. There it boils down
to an integral, over the circle, of all twisted signatures, one for each U(1)
representation of Z, compare Lemma 4.5.

The Cheeger-Gromov estimate from Theorem 2.9 now clearly implies the
following innocent looking estimate. It will be crucial for our purposes.

Theorem 2.12. For any closed oriented 3-manifold M , there is a constant
CM such that for all groups Γ and all homomorphisms φ : π1M → Γ

|ρΓ(M,φ)| < CM .

We noticed long ago that such an estimate would be extremely helpful
for understanding our filtration of the knot concordance group. We made
several unsuccessful attempts at proving this estimate by using (2.10), i.e.
the interpretation in terms of signature defects. Our lesson is that estimates
are best approached with analytic tools.

3. Gropes of height (n+ 2) in D4

In this section we review the definition of a Grope and then describe, for
each positive integer n, large families of knots in S3 that bound embedded
Gropes of height (n + 2) in D4. In the next section we show that among
these are knots that do not bound any Grope of height (n+ 2.5) in D4.

We now review the definition of a Grope (see [FQ] [FT]). More precisely,
we shall only define symmetric gropes (and Gropes) since these are used
exclusively. We shall therefore suppress the adjective “symmetric”, for a
survey of other notions and applications, see [T].

In the following, when we refer to a “surface”, we mean a compact, con-
nected, oriented surface with one boundary component. Recall that each
connected component of an abstract grope G is built up from a connected
first-stage surface G1 by gluing second-stage surfaces to each circle in a
symplectic basis {aj, bj}, 1 5 j 5 2g, for G1. This growth process contin-
ues, so that in general the k-stage surface (Gk)aj

is glued to aj and (Gk)bj

is glued to bj where {aj, bj} is a symplectic basis of circles for one of the
(k − 1)-stage surfaces. One does this for each (k − 1)-stage surface. If a
grope has n stages in all then we say that it has height n. A grope of height
n+ .5 is a grope of height n together with further surfaces attached to only
half of a symplectic basis for each one of the nth-stage surfaces. A grope
of height 0 is understood to be merely a circle (no surfaces). The union of
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all of the circles in symplectic bases for the n-stage surfaces is called the
set of tips of the grope. No surfaces are attached to the tips.

The reader may have observed that gropes are related to the derived
series of a group as follows. Let A(i) denote the i-th derived group of a
group A, inductively defined by A(0) := A and A(i+1) := [A(i), A(i)]. A
group A is n-solvable if A(n+1) = 1 (0-solvable corresponds to abelian) and
A is solvable if such a finite n exists. The connection between gropes and
the derived series is then given by the following statement, see [FT, Part
II Lemma 2.1]. A loop γ : S1 → X in a space X extends to a continuous
map of a height n grope G → X if and only if γ represents an element
of the n-th term of the derived series of the fundamental group of X. In
particular, for γ to bound an embedded such grope is a strictly stronger
statement. In this paper when we say that a circle bounds a grope in a
space X, we will mean that it bounds an embedded copy of the abstract
grope. The difference between this geometric condition and its algebraic
counterpart is a central underlying theme of this section.

If a grope G is embedded in a 4-dimensional manifold, we usually would
like to be able to take arbitrarily many disjoint parallel copies, hence we
require the following framing condition: A neighborhood of G is diffeomor-
phic to the product of R with a neighborhood of a standard embedding
of G into R3. Another way of expressing this is to say that the relative
Euler number of each surface stage vanishes. This relative invariant is de-
fined because the boundary circle of each surface stage, except the bottom,
inherits a framing from its embedding into the previous stage. In [FT],
neighborhoods of such framed gropes in 4-manifolds were called Gropes
and we shall retain this convention (without explicitly distinguishing the
neighborhood and its spine). Note that a grope embedded in a 3-manifold
is automatically framed, so we can be sloppy with the capitalization. Fi-
nally, if one removes a disk from the bottom surface of a grope (away from
the attaching circles of the next surfaces), one obtains an annular grope
that has two boundary circles.

Definition 3.1. Two links L0 and L1 in S3 are called height n-Grope
concordant if they cobound a disjoint union of annular height n-Gropes in
S3 × I where each Grope has one boundary component in L0 and one in
L1. If a link is height n Grope concordant to the unlink then we say that
it is height n-Grope slice. If the links lie in S3 r R for some other link R,
and also the annular Grope lies in (S3 r R) × I, then we refer to it as a
Grope concordance rel R.

It is easy to see that the quotient group C/Gn from the introduction
is the same as the quotient group given by knots modulo the equivalence
relation of height n-Grope concordance.



14 TIM D. COCHRAN AND PETER TEICHNER

Suppose R is a knot in S3 and H = {H0, H1} is a 0-framed ordered
Hopf link in S3 that misses R, such as is shown in Figure 3.2. Since 0-
framed surgery on a Hopf link in S3, denoted (S3)H , is well known to
be homeomorphic to S3 (see [K]), the image of the knot R under this
homeomorphism is a new knot K (i.e. (S3, R)H u (S3, K)). We say that
K is the result of surgery on H (see [K]). Let θ denote the dashed circle
shown in Figure 3.2 that is a parallel of H0 but does not link H1.

H1 H0
θ

Figure 3.2. A Hopf link in S3 −R

By sliding the left hand strands of R over H0 and then cancelling the
Hopf pair, one sees that the effect of one Hopf surgery is as in Figure 3.3.

Figure 3.3. The effect of a Hopf surgery

The following proposition discusses the effect of repeated application of
the above Hopf surgery. In particular, we assume that several separated
Hopf links are given, i.e. the Hopf links together with their bounding
2-disks are embedded disjointly.

Proposition 3.4. Suppose R is a knot and K is the result of surgery on
separated Hopf links H i, 1 ≤ i ≤ m, in S3 rR. Suppose the link θ1, . . . , θm
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(see Figure 3.2) is height n-Grope slice rel R. Then K and R are height
n-Grope concordant.

Proof. We first assume that there is only one Hopf link H = {H0, H1} and
later indicate the modifications necessary in the general case. First observe
that, in S3, K and R cobound an embedded punctured annulus. If there
is only one strand of R going through H1 in Figure 3.2, this annulus has
one puncture, namely θ, and is shown in Figure 3.5. If there are r strands,
just take r parallel copies of this figure, noticing that the relevant part
is planar. Thus the result is embedded annulus with r punctures, each a
0-framed copy of θ.

R

K

θ

Figure 3.5. A punctured annulus cobounding K and R

We can extend this annulus by R × I to get a punctured annulus A
in S3 × I, leading from K down to R. By assumption, there is a height
n Grope G that bounds θ in (S3 rR)× I. Since G is framed we can get r
disjoint parallel copies and we can glue them into the punctures of A. The
result is a height n-Grope concordance between K and R.

In the general case that there is more than one Hopf link, the same
arguments works: first one constructs a punctured annulus A between R
and K, embedded in S3 except for the portion R × I. The punctures of
A are now parallels of the link θ1, . . . , θm but by assumption they can be
filled by disjoint Gropes that miss the interior of A because they lie in the
complement of R× I. �

Now we want to describe a particular large class of knots that bound
(n+ 2)-Gropes in D4 by virtue of satisfying Proposition 3.4. We fix a very
specific knot J , as defined implicitly by Figure 3.6, that is obtained from
the trivial knot U by performing 0-framed surgery on the 14-component
link shown in the Figure.
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U

J
∼=

Figure 3.6. The knot J as surgery on an unknot U

The surgery point of view that defines J has enormous flexibility for our
purposes. In fact, the picture for J will be redrawn 5 times in this paper,
depending exactly on the aspect of knot theory that we study. For those
familiar with the language of claspers [Hab], J can also be described as
the knot obtained by performing clasper surgery on the unknot along the
height 2 clasper as shown in Figure 3.7 (we have used a convention wherein
an edge corresponds to a left-handed Hopf clasp). It was shown in [CT]
that J cobounds with the unknot a grope of height 2, embedded in S3.
Here we do not want to use this 3-dimensional notion and prefer to give
a direct construction of a certain height (n+ 2)-Grope concordance. Note
however, that the shift by 2 is a direct consequence of this special feature
of J .

U

J∼=

Figure 3.7. A clasper construction of J

Suppose R is a slice knot. Given any ηi, 1 ≤ i ≤ m, disjointly embedded
circles forming a trivial link in S3 such that [ηi] ∈ π1(S

3 r R)(n), we can
consider the knot R(η1, . . . , ηm, J) obtained from R by genetic infection
along each ηi by the auxiliary knot J (see Figure 1.6).

In the next section we will show that, for many R there exist certain
choices of the homotopy classes [ηi], such that for any sufficiently large
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positive integer N , the infected knot R(η1, . . . , ηm,#
N
j=1J) does not bound

any Grope of height (n + 2.5) in D4. When we say this we mean for any
choice of representatives ηi of [ηi]. In this section, we would like to prove
that R(η1, . . . , ηm,#

N
j=1J) does bound a Grope of height (n + 2) in D4.

However we cannot prove this in all cases. We need the (isotopy classes)
ηi to be chosen carefully to have the stronger geometric property that they
are height n-Grope slice, rel R, see Definition 3.1. We will demonstrate
that this can be arranged by choosing the isotopy class of each ηi carefully
within its homotopy class. We will then use Proposition 3.4, resulting in
the following theorem.

Theorem 3.8. Suppose R is a slice knot, J is the knot of Figure 3.6, N
is a positive integer, and [ηi] ∈ π1(S

3 r R)(n), 1 ≤ i ≤ m. There exist
representatives η1, . . . , ηm disjointly embedded, forming a trivial link in S3,
such that R(η1, . . . , ηm,#

N
j=1J) bounds a Grope of height (n+2) in D4, i.e.

is height (n+ 2)-Grope slice.

Proof. We need the very general Lemma below. Here a capped Grope is a
Grope equipped with a set of 2-disks (called caps) whose boundaries are
the (full set of) tips of the Grope. In the lemma below, our capped Gropes
are embedded in S3 (although the caps may intersect the knot R). Our
only use for the caps is that they are a good way to make sure that the
collection of boundary circles ηi of a disjoint union of such capped Gropes
is a trivial link in S3. This follows since “one-half” of the caps can be used
to ambiently ”surger” the Gropes, producing disjointly embedded disks
with boundary ηi, each of which lies in a small regular neighborhood of its
corresponding capped Grope. The technique for the following result was
used in [FT, Part II Lemma 2.8].

Lemma 3.9. Suppose R is a knot and [ηi] ∈ π1(S
3 r R)(n), 1 ≤ i ≤ m.

Then there exist height n capped Gropes Gi, disjointly embedded in S3,
disjoint from R except for the caps, and such that, for each i, ∂Gi is in the
homotopy class of [ηi].

Proof of Lemma 3.9. The proof is by induction on n. Suppose n = 0.
By general position we can choose disjoint embedded representatives ηi of
the [ηi]. Moreover, by further “crossing changes” we may suppose that
ηi forms a trivial link in S3. Setting Gi = ηi completes the case n = 0
since a height zero Grope is merely a circle. The caps are the set of disks
that the ηi bound. Now, suppose the theorem is true for n − 1. Suppose
[ηi] =

∏
j[aij, bij] for some aij, bij in π1(S

3\K)(n−1). Using the induction

hypothesis applied to each of the aij and bij, choose embedded height (n−1)
capped Gropes Hij and Lij, pairwise disjoint except for the basepoint, such
that [∂Hij] = aij, [∂Lij] = bij for all i and all j. Let Aij = ∂Hij, Bij = ∂Lij.
We can alter these Gropes to assume that, for each fixed i, the Ai1, Bi1,
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Ai2, Bi2, . . . share a common point as illustrated for the case i, j ≤ 2 on
the left-hand side of Figure 3.10, with the Hij coming up straight out of
the plane of this page and the Lij going down straight below the plane of
this page.

B11

B21

A11

A21 A22

A12

B22

B12 N1

N2

Figure 3.10

Then we can “thicken” this wedge slightly as shown on the right side of
Figure 3.10, avoiding all the caps for Hij and Lij, to form a new embedded
surface Ni whose boundary has the homotopy class of [ηi]. Then Ni ∪
(
⋃

j Hij

⋃
j Lij) forms a height n capped Grope Gi, and these are disjoint

for different i. �

Remark 3.11. In the above theorem, S3 may be replaced by any orientable
3-manifold X as long as the ηi are trivial in π1(X).

Continuing with the proof of Theorem 3.8, by Lemma 3.9 there exist
embedded representatives ηi, 1 ≤ i ≤ m, forming a trivial link in S3,
that bound disjointly embedded height n Gropes in S3 r R (with caps
that intersect R). We get height n-Gropes G1, . . . , Gm in (S3 r R)× I by
pushing slightly into the I-direction, leaving only the boundary in S3.

For each i, form 5N parallel push-offs of ηi, denoted ηijk, 1 ≤ j ≤ N ,
1 ≤ k ≤ 5. Now, for each fixed i and j, connect the 5 circles by four
short arcs, connecting ηij1 to ηij2, ηij2 to ηij3, et cetera. For each fixed i
and j, inside a regular neighborhood of the short arcs, connect the 5 circles
ηij1, . . . , ηij5 by a collection of arcs to form a copy of the embedded tree as
shown in the left hand side of Figure 3.7. Then for varying i, j, using the
mN trees as guides, replace each tree with a copy, Lij, of the 14-component
link of Figure 3.6. These trees, and hence the links, will be pairwise disjoint.
Let K denote the result of 0-framed surgery on

∐
i,j Lij.

First we claim that K is isotopic to R(η1, . . . , ηm,#
N
j=1J). For, since

for fixed (i, j), ηij1, . . . , ηij5 are parallel, there is a 3-ball Bij such that
(Bij, Bij

⋂
R) is a trivial tangle. Moreover we may assume that this ball

contains Lij. In this way one sees that the effect of the ijth surgery is locally
the same as the effect of the 14-component link of Figure 3.6 on a trivial
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tangle. This effect is clearly to tie all the parallel strands of the trivial
tangle into the knot J . Moreover, since for each fixed i, the N circles ηij1,
1 ≤ j ≤ N are also parallel, modifying each by J is the same as infecting a
single one, say ηi11, by #N

j=1J . Thus K is the result of genetic modification

of R along the original m circles {ηi} via #N
j=1J .

Secondly we claim that K satisfies the hypotheses of Proposition 3.4
for (n + 2) and so K and R are height (n + 2)-Grope concordant. Since
R was assumed slice, the verification of this claim will finish the proof of
the theorem. To apply that Proposition we must establish that K can
be viewed as the result of surgery on a disjoint union of Hopf links in
the exterior of some slice knot and show that the appropriate circles θ
associated to each Hopf link are height (n + 2)-Grope slice rel R. We
focus on one link Lij and order its components (H0, . . . , H13) as shown in
Figure 3.12. Ignore the shading for now.

H0

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

Figure 3.12. The link Lij

The pictured link is merely a copy of that shown in Figure 3.6, except
that the three copies of the Borromean rings have been altered by isotopy
to arrive at the embedding shown in Figure 3.12. We can now perform 4
handle cancellations, namely the 4 pairs on the left, read from the bottom
as

H10 −H5, H11 −H6, H12 −H7, H13 −H8.

What remains is a 6 component link Nij shown in Figure 3.13.
Let L := Nij − {H0, H1}. Since L consists of two separated Hopf links,

surgery along L yields S3 again. Furthermore, the knot R can be disen-
tangled from these two Hopf links by sliding over H2 and H3. Therefore,
the image of R in S3

L remains a slice knot, R′. Thus we have shown that
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H0
H1

H2

H3

H4

H9

Figure 3.13. The link Nij

K is the image of a slice knot,R′, in a manifold, S3
L, homeomorphic to S3,

after surgery on a 2-component link (H0, H1). Using handle slides over H4

and H9 one sees that this link is indeed a Hopf link in S3
L.

We now describe a height 2 Grope, embedded in S3 whose boundary is
θ. Recall from the notation of Figure 3.2 that θ is merely a parallel of H0

that is short-circuited to avoid linking H1. The (punctured) torus shown
shaded lightly in Figure 3.13 is the first stage of the Grope. The obvious
symplectic basis for this torus consists of two circles that are (isotopic to)
meridians of H2 and H3, shown as dashed in Figure 3.13. The annuli that
go between the symplectic basis and the dashed circles are part of the
Grope and are often called “pushing annuli”. These dashed meridians in
turn bound punctured torii, that are shown darkly shaded (partially) in
Figure 3.13. This gives the embedded Grope G of height 2, each of whose
surfaces has genus one, together with four pushing annuli identifying the
tips of the Grope with {η2, η3, η4, η5}. Recall that we are fixing i, j and
hence there are really mN such Gropes Gij with boundary θij, embedded
disjointly in S3

L.
The Gropes Gij will constitute the first two stages of the height (n+ 2)

Gropes whose boundary is θij, that we need to exhibit in (S3
L r R)× I to

verify the hypothesis of Proposition 3.4. The higher stages of this Grope
are just 4N parallel copies of the height n-Gropes Gi bounding ηi that exist
by assumption. These are attached to the tips of Gij. This finishes the
verification that K satisfies the hypotheses of Proposition 3.4 for (n + 2)
and so K bounds a Grope in D4 of height equal to (n+ 2). �
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We note in passing that the argument used in the verification that the
knot K satisfied the hypotheses of Proposition 3.4 generalizes to establish
the following Corollary (that we make no use of in this paper). We state it
in the language of claspers and the trees that underly them. See [CT] for
definitions. It has generalizations to non-symmetric trees but we suppress
this for simplicity. Suppose (T, r) is a uni-trivalent tree T equipped with a
distinguished univalent vertex r called the root. Observe that each rooted
(tree) clasper has an underlying rooted tree (compare Figure 3.7).

Corollary 3.14. Suppose K is the result of clasper surgery on a knot R
along

∐`
i=1C(Ti,ri) (a disjoint union of claspers whose root leaves bound

disjoint disks in S3). Suppose each (Ti, ri) is a rooted symmetric tree of
height m and that the non-root leaves of C(Ti,ri) form a link that is height
n-Grope slice rel R. Then K and R are height (m+ n)-Grope concordant.

4. Knots that are not (n.5)-solvable

In this section we complete the proof of our main Theorem 1.4. First we
review the necessary definitions.

For a CW-complex W , we define W (n) to be the regular covering corre-
sponding to the subgroup π1(W )(n). If W is an oriented 4-manifold then
there is an intersection form

λn : H2(W
(n))×H2(W

(n)) −→ Z[π1(W )/π1(W )(n)].

Similarly there is a self-intersection form µn. For n ∈ N0, an n-Lagrangian
is a submodule L ⊂ H2(W

(n)) on which λn and µn vanish and which maps
onto a Lagrangian of λ0.

Definition 4.1. [COT, Sections 7,8] A knot is called (n)-solvable if M
(the zero surgery on the knot K) bounds a spin 4-manifold W , such that
the inclusion map induces an isomorphism on first homology (a 4-manifold
satisfying only this is called an H1-bordism for M) and such that W admits
two dual n-Lagrangians. This means that the intersection form λn pairs
the two Lagrangians non-singularly and that their images together freely
generateH2(W ). ThenM is also called (n)-solvable andW is called an (n)-
solution for M and K. A knot is called (n.5)-solvable, n ∈ N0, if M bounds
a spin 4-manifold W such that the inclusion map induces an isomorphism
on first homology and such that W admits an (n + 1)-Lagrangian and a
dual n-Lagrangian in the above sense. The W is called an (n.5)-solution
for K and M .

Recall also the rational derived series, G
(n)
r , of a group G wherein G

(0)
r ≡

G and G
(n+1)
r ≡ {g | gk ∈ [G

(n)
r , G

(n)
r ] for some positive integer k}. The

terms of the rational derived series are slightly larger than the terms of
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the derived series but they have the key technical advantage that their
successive quotients are torsion-free abelian groups [Ha, Section 3].

The following are the major theorems of this section. Combined with
Theorem 3.8 they give large families of knots that are (n)-solvable but not
(n.5)-solvable.

Theorem 4.2. Let R be an n-solvable knot (n ≥ 1) and M the 0-framed
surgery on R. Suppose there exists a collection of homotopy classes

[ηi] ∈ π1(M)(n), 1 ≤ i ≤ m,

that has the following property: For any (n)-solution W of M there exists

some i such that j∗(ηi) /∈ π1(W )
(n+1)
r where j∗ : π1(M) −→ π1(W ).

Then, for any oriented trivial link {η1, . . . , ηm} in S3 rR that represents
the [ηi], and for any m-tuple {J1, . . . , Jm} of Arf invariant zero knots for
which |ρZ(Ji)| > CM (the Cheeger-Gromov constant of M), the knot

K = R(η1, ..., ηm, J1, ..., Jm)

formed by genetic infection is n-solvable but not (n.5)-solvable. Moreover,
K is of infinite order in Fn/Fn.5.

Theorem 4.3. Suppose R is a genus 2 fibered knot that is n-solvable (for
example a genus 2 fibered ribbon knot). Then there exists a collection of
homotopy classes satisfying the hypotheses of Theorem 4.2.

Proof of Theorem 4.2. Let V ′ be an (n)-solution for M . Let N be the zero
surgery on K. Using V ′ we will show that N (and hence K) is n-solvable.
Moreover, assuming the existence of an (n.5)-solution V for N , we shall
derive a contradiction.

There is a standard cobordism C between M and N which can be de-
scribed as follows. For each 1 ≤ i ≤ m, choose a spin 4-manifold Wi whose
boundary isMJi

, the zero surgery on Ji, such that π1(Wi) ∼= Z generated by
a meridian of Ji and such that the intersection form on H2(Wi) is a direct
sum of hyperbolic forms. Such a Wi is a 0-solution of MJi

. It exists when-
ever the Arf invariant of Ji is zero. Now form C fromM×[0, 1] and

∐m
i=1Wi

by identifying (for each i) the solid torus in ∂Wi ≡ (S3\Ji) ∪ (S1 × D2)
with a regular neighborhood of ηi × {1} in such a way that a meridian of
Ji is glued to a longitude of ηi and a longitude of Ji is glued to a meridian
of ηi. Then ∂+C ∼= N and ∂−C ∼= M . Also observe that C can be assumed
to be spin by changing the spin structure on Wi if necessary.

Let W = C ∪ V and W ′ = C ∪ V ′. We claim that W is an (n)-solution
for M and that W ′ is an (n)-solution for N . Clearly W is an H1-bordism
for M and W ′ is an H1-bordism for N , and

H1(M) ∼= H1(C) ∼= H1(N) ∼= H1(V ) ∼= H1(W ) ∼= H1(W
′) ∼= Z
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all induced by inclusion. Thus V and N = ∂V have 2 distinct spin struc-
tures and changing the spin structure on V changes that induced on ∂V
(similarly for M and V ′). Hence spin structures on the manifolds V and V ′

can be chosen to agree with those induced on N and M by the spin mani-
fold C. Thus W and W ′ are spin. It is easy to see that H2(C) is isomorphic
to
⊕m

i=1H2(Wi) ⊕ H2(M) by examining the Mayer-Vietoris sequence for
C ∼= (M × [0, 1]) ∪ (

∏m
i=1Wi). By a similar sequence for W ∼= V ∪ C one

sees that

H2(W ) ∼= (H2(C)⊕H2(V ))/i∗(H2(N)).

Since N −→ V induces an isomorphism on H1, one easily sees that it
induces the zero map on H2. Moreover, a generator of H2(N) under the
map

H2(N) −→ H2(C) ∼=
m⊕

i=1

H2(Wi)⊕H2(M)

goes to a generator of H2(M) since it is represented by a capped-off Seifert
surface for R that can be chosen to miss the ηi (since n ≥ 1). It follows
that

H2(W ) ∼=
m⊕

i=1

H2(Wi)⊕H2(V ).

Similarly, H2(W
′) ∼=

⊕m
i=1H2(Wi) ⊕H2(V

′). Since V is an (n.5)-solution
for N , it is an (n)-solution for N , so there exists an n-Lagrangian with
n-duals. This may be thought of as collections L and D of based immersed
surfaces that lift to the π1(V )(n) cover of V (called n-surfaces in [COT,
Sections 7 and 8]), that together constitute a basis of H2(V ; Z) and that
satisfy

λn(`i, `j) = µn(`i) = 0, λn(`i, dj) = δij

for the intersection and self-intersection forms with Z[π1(V )/π1(V )(n)]-
coefficients. These same collections are certainly n-surfaces in W since
π1(V )(n) maps into π1(W )(n) under the inclusion. Since the equivariant in-
tersection form can be calculated from the collections L and D (or by natu-
rality) these also retain the above intersection properties with Z[π1(W )/π1(W )(n)]
coefficients. Now consider collections of 0-Lagrangians, Li, and 0-duals, Di,
for the 0-solutions Wi. Since the map

π1(Wi) −→ π1(C) −→ π1(W )/π1(W )(n)

is zero (since π1(Wi) is generated by ηi), these 0-surfaces are n-surfaces
in W . Since the union of all of these collections is a basis for H2(W ), it
constitutes an n-Lagrangian and n-duals for W . Thus W is an (n)-solution
for M . Similarly, W ′ is an (n)-solution for N . In particular K is n-solvable.

Now let Γ = π1(W )/π1(W )
(n+1)
r . It is straightforward to verify that Γ

is an n-solvable poly-(torsion-free-abelian) group (abbreviated PTFA) [Ha,
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Section 3]. Let ψ : π1(W ) −→ Γ be the projection. Let φ and φ′ denote
the induced maps on π1(M) and π1(N) respectively.

Proposition 4.4.

ρΓ(M,φ)− ρΓ(N, φ′) =
m∑

i=1

εiρZ(Ji)

where εi = 0 or 1 according as φ(ηi) = e or not.

Proof. By [COT2, Proposition 3.2]

ρΓ(M,φ)− ρΓ(N, φ′) =
m∑

i=1

ρΓ

(
MJi

, ψ|π1(MJi
)

)
.

Since ψ|π1(MJi
) factors through Z generated by ηi, its image is zero if εi = 0

and is Z if εi = 1. In the former case ρΓ = 0 since σ
(2)
Γ is then the ordinary

signature. In the latter case ρΓ = ρZ (replacing Γ by the image of ψ|π1(MJi
)),

by [COT, Proposition 5.13]. But ρZ(MJi
, ψ|π1(MJi

)) is just what we have

called ρZ(Ji). �

Moreover since V is assumed to be an (n.5)-solution for N and φ′ ex-
tends to π1(V ), ρΓ(N, φ′) = 0 by [COT, Theorem 4.2]. Finally by hypoth-
esis, there exists some i such that φ(ηi) 6= e. Thus, by Proposition 4.4,
|ρΓ(M,φ)| > CM , a contradiction. Therefore no (n.5)-solution exists for
N , that is to say K is not (n.5)-solvable.

Now suppose K = K(R, η, J) were of finite order k > 0 in Fn/Fn.5. Let
N# denote the 0-framed surgery on #k

j=1K, and let V# denote an (n.5)-
solution for N#. We shall arrive at a contradiction, implying that K is of

infinite order. There is a standard cobordism D from
∐k

j=1Nj (where Nj is

the jth copy of N) to N# that is obtained from
∐k

j=1Nj × [0, 1] by adding

(k−1) 1-handles and then (k−1) 2-handles. After just adding the 1-handles

one has a cobordism from
∐k

j=1Nj to the zero framed surgery on the split
link consisting of the disjoint union of Kj. Next add zero framed 2-handles
to loops, the jth, 2 ≤ j ≤ k, of which goes once around the meridian of
K1 and once around the meridian of Kj. Using Kirby’s calculus of framed
links one sees that the resulting 3-manifold is homeomorphic to N# (see
[COT2, pg.113]. Let W denote the 4-manifold

W := V# ∪N#
D ∪

(
k∐

j=1

Cj

)
where Cj is the jth copy of the standard cobordism C (described above)

between M and N . Let Γ = π1(W )/π1(W )
(n+1)
r and ψ : π1(W ) → Γ the

projection. Let φj, φ
′
j, φ denote the restrictions of ψ to π1(Mj), π1(Nj)
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and π1(N#) respectively. SinceD is a homology cobordism with coefficients

in K(Γ), the quotient field of ZΓ [COT2, Lemma 4.2],
∑k

j=1 ρ(Nj, φ
′
j) =

ρ(N#, φ#). Since V# is an (n.5)-solution for N# over which φ# extends,
ρ(N#, φ#) = 0 by [COT, Thm. 4.2]. Thus,

k∑
j=1

ρ(Mj, φj) =
k∑

j=1

m∑
i=1

εjiρZ(Ji)

where εji = 0 if φj(ηji) = e and εji = 1 if φj(ηji) 6= e. We assert (and prove
below) that, for each j, there exists some i, such that φj(ηji) 6= e. Thus

|
∑k

j=1 ρ(Mj, φj)| > kCM , which is a contradiction since |ρ(M,φj)| < CM .
To establish the assertion above, fix j = j0 and consider the 4-manifold

W = W ∪

 k⋃
j=1
j 6=j0

−Wj


where Wj is a copy of the (n)-solution for M discussed above. Then ∂W =
Mj0 . By an argument as above, one sees that W is an (n)-solution for
Mj0 . By the assumption in Theorem 4.2, there exists some i (depending

on j0) such that j∗(ηj0i) /∈ π1(W )
(n+1)
r where j : Mj0 → W is the inclusion.

Since this inclusion factors Mj0
i∗−→ W −→ W , it follows that i∗(ηj0i) /∈

π1(W
(n+1)
r ). Hence φj0(ηj0i) 6= e in Γ. This establishes the assertion and

completes the proof of Theorem 4.2. �

We can now give the proof of Theorem 1.4.

Proof of Theorem 1.4. First, we will show that Fn/Fn.5 contains an ele-
ment of infinite order. We may assume that n ≥ 1 since this result was
known previously for n = 0, 1 and 2. There exist genus 2 fibered ribbon
knots, for example the connected sum of two figure eight knots. Hence by
Theorem 4.3 there exists an n-solvable knot R and classes {[ηi]} satisfying
the hypotheses of Theorem 4.2. Certainly there exist representatives of
these classes that form a trivial link since we can alter any collection by
crossing changes to achieve this. There also exist Arf invariant zero knots
with ρZ > CM , for example the connected sum of a suitably large even
number of left-handed trefoil knots. Then Theorem 4.2 implies that the
knot K formed by genetic infection of R along any such collection {ηi}
using any such {Ji} is of infinite order in Fn/Fn.5.

Now, in order to prove the other statements of Theorem 1.4, we just
need to re-do the proof above and be a little more careful in choosing the
infection knots. In fact, the shift by two for the inclusion Gn+2 ≤ Fn

is related to the fact that the knot J from Figure 3.6 by construction
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cobounds with the unknot a Grope of height 2 in S3, yet it also satisfies
the essential nontriviality condition that the integral, over the circle, of the
Levine-Tristram signature function of J is non-zero.)

Let R be a genus 2 fibered ribbon knot. Let M be the zero surgery on
R and let N be an even integer greater than CM where CM is the Gromov-
Cheeger constant for M . Given n, by Theorem 4.3 there exist homotopy
classes [ηi] ∈ π1(S

3\R)(n), 1 ≤ i ≤ m, with the property that, for any
(n)-solution W of M there exists some i such that [ηi] is not mapped to

zero under the homomorphism π1(M) → π1(W ) → π1(W )/π1(W )
(n+1)
r .

Let J be the knot shown in Figure 3.6. Applying Theorem 3.8 we get
representatives η1, . . . , ηm disjointly embedded, forming a trivial link in S3

such thatK = R(η1, . . . , ηm,#
N
j=1J) bounds a Grope of height (n+2) inD4.

Hence R(η1, . . . , ηm,#
N
j=1J) ∈ Gn+2. Yet by Theorem 4.2, #`K is not (n.5)-

solvable for any ` ≥ 1, since, by Lemma 4.5 (below), ρZ(#N
j=1J) = NρZ(J)

is strictly more than CM . Note that the Arf invariant of J is zero since our
4-manifold W is spin. Thus #`K /∈ Fn.5 and it follows a fortiori that #`K
does not bound any (n+ 2.5)-Grope in D4.

Lemma 4.5. The von Neumann signature of J associated to the infinite
cyclic cover, denoted ρZ(J), satisfies

ρZ(J) =
4

3

In fact, J has the same Levine-Tristram signatures as the left-handed trefoil
knot.

Proof of Lemma 4.5. Recall we can compute ρZ(J) from any Z-bordism
W for MJ as follows. Let M be a matrix for the intersection form on
H2(W ; Z[Z])). Then the integral over the unit circle of the signature of
M(ω) gives the von Neumann signature of W associated to the map to Z,
σZ(W ), and by definition ρZ(J) = σZ(W ) − σ(W ). Recall that J is ob-
tained from the unknot U by 0-framed surgery on the 14-component link
shown in Figure 3.6 (see also Figure 3.12 for the labelling of the compo-
nents). This picture also encodes an assortment of possible 4-manifolds W ,
each with boundary the 0-surgery MJ . This is seen as follows. Consider
labelling some of the components of the 14-component link by dots and
label the remainder by 0’s. Also label the unknot U by a dot, subject
to the restriction that the collection, A, of all components labelled with
dots constitutes a trivial link in S3, hence bounds a collection of disjointly
embedded 2-disks in the 4-ball. Let V be the exterior of this collection of
disks in the 4-ball. Now interpret the remaining circles with 0 labels as
0-framed 2-handles attached to S3−A which is part of the boundary of V .
The result is a 4-manifold, W .
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Since V is diffeomorphic to the manifold obtained from a 4-ball by adding
1-handles (one for each dotted component), one can think of the choices
above as deciding which components of the 14-component link will rep-
resent 1-handles and which should represent 2-handles. Also since V has
the same boundary as the manifold obtained by adding 0-framed 2-handles
along the trivial link represented by A, the boundary of any such W is the
same as doing 0-framed surgery on all the components, namely 0-framed
surgery on J .

U

H0
H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

Figure 4.6. A 4-manifold with boundary MJ

The best decision for our purposes is as shown in Figure 4.6. Note that
the Borromean rings formed by {H0, H2, H3} has been altered by an isotopy
to yield a different embedding than that shown in Figure 3.12. This allows
for six 1− 2-handle cancellations, so that the diagram can be simplified by
handle slides to leave only one 1-handle (corresponding to U) and two 2-
handles, corresponding to H2 and H4. The resulting handle decomposition
is shown in Figure 4.7.

It follows that π1W ∼= Z, generated by a meridian, and that π2W is free
on the two 2-handles H2, H4 in the sense that the core of a 2-handle leads
to a 2-sphere in W if the attaching circle is null homotopic in the 4-ball
(minus the disk corresponding to the 1-handle). In fact, the circle labelled
H4 bounds an immersed 2-disk that can be seen as follows. Note that H4

bounds the(punctured) torus shown darkly shaded Figure 4.7. But the two
circles representing a symplectic basis for this torus are freely homotopic
meridians of U . Thus the circle labelled H4 in Figure 4.7 can be altered
by a local homotopy (no intersections with U) until it is undone from U .
Similarly, H2 winds around U in a way that is precisely a “doubling” of
the way H4 wraps around U in Figure 4.7. It follows that H2 is homotopic
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U H2

H4

0

0

Figure 4.7

to a circle that is undone from U . This implies

W ' S1 ∨ S2 ∨ S2.

Examining the intersections created during these homotopies (in the group
ring Z[Z]) gives the intersection form λ on π2W . For example, since the
two homotopies above are disjoint, there are immersed 2-spheres repre-
senting [H2] and [H4] that intersect in precisely one point. Therefore
λ([H2], [H4]) = 1. It turns out that the intersection matrix is given by

λ =

(
−t− t−1 + 2 1

1 −t− t−1 + 2

)
Since the determinant (t+t−1−2)2−1 of λ factors as (t+t−1−1)(t−3+t−1)),
its only zeroes on the unit circle are the two primitive 6th roots of unity.
These are exactly the zeros of the first factor, which is the Alexander poly-
nomial of the trefoil knot. Since the signature function on the unit circle
is constant except at these values, it suffices to check that the signature
of λ is +2 when substituting t = −1. Note that if both diagonal entries
of λ were changed in sign, then the analysis is the same except that J
has the signature of the right-handed trefoil knot. Since all we really need
is that the integral of the signature function is non-zero, this would also
suffice. �

This completes the proof of Theorem 1.4, modulo the proof of Theo-
rem 4.3. �
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5. Higher-Order Alexander Modules and Blanchfield
Duality

We have completed the proofs of our main theorems modulo the proof
of Theorem 4.3, which is a deep result concerning the nontriviality of the
inclusion maps π1(MR) → π1(W ) where W is an arbitrary (n)-solution for
the knot R. To underscore the nature and difficulty of the task, note that
it will be a direct consequence of Theorem 4.3 that, if R is a genus two
fibered ribbon knot and W is the exterior in B4 of any slice disk for R, then
π1(W ) is not a solvable group! For such a W is an (n)-solution for every
n and if π1(W )(n) = 0 then, for any ηi ∈ π1(MR)(n), j∗(ηi) = 0. To prove
Theorem 4.3 we will need the full power of the duality results of [COT,
Section 2], which we here review for the convenience of the reader.

In [COT] it was observed that the classical Alexander module and the
classical Blanchfield linking form have higher-order generalizations that
can be defined using noncommutative algebra. These modules reflect the
highly nonsolvable nature of the fundamental group of the knot exterior.
Using these modules as measures of nonsolvability, it was shown that if a
knot is a slice knot with slice disk ∆, then π1(B

4−∆) is not arbitrary, but
rather is constrained by π1(S

3 − K). It is Poincaré Duality with twisted
coefficients that provides connections between the higher-order modules of
B4 − ∆ and those of S3 − K. These constraints are expressed through
higher-order Blanchfield duality. We also obtained similar results if K is
an (n)-solvable knot.

More specifically, recall that the classical Alexander module and Blanch-
field form are associated to the infinite cyclic cover, XZ, of the exterior,
X, of a knot K in S3, being merely H1(XZ,Z) viewed as a module over
Z[t±1]. More generally, consider any regular covering space, XΓ, that is
obtained by taking iterated covering spaces, each with torsion-free-abelian
covering group. The group of covering translations, Γ, of such a cover
is poly-(torsion-free-abelian) and hence solvable and torsion-free. We call
H1(XΓ,Z), viewed as a module over ZΓ, a higher-order Alexander module.
Even in the classical case, the ring Z[t±1] can be simplified by localiz-
ing the coefficient group Z to get Q and considering the classical rational
Alexander module, AZ, a module over the PID Q[t±1]. Similarly, after
appropriate localization of the ring ZΓ, the higher-order modules become
finitely-generated torsion modules, AΓ over a noncommutative PID K[t±1]
[COT, Proposition 2.11, Corollary 3.3]. Briefly, this is seen as follows.
There is a split exact sequence

1 → Γ′ → Γ → Z → 1

where Γ′ is the commutator subgroup of Γ. It follows that ZΓ can be
identified with a twisted Laurent polynomial ring ZΓ′[t±1]. Because Γ is
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torsion-free and solvable, ZΓ and ZΓ′ are right Ore domains and thus admit
classical right quotient fields K and K. LetR denote the ring obtained from
ZΓ by inverting the non-zero elements of ZΓ′, so that

ZΓ ⊂ R ⊂ K.

The localized ring R is then identified with the twisted Laurent polynomial
ring K[t±1] with coefficients in the skew field K. Thus R is seen to be a
(noncommutative) PID by considering the obvious degree function on the
polynomial ring. There is a classification theorem for modules over a non-
commutative PID analogous to that for a commutative PID. Consequently
the finitely generated modules

AΓ
∼= ⊕i(R/pi(t)R)

then have a measurable “size”, namely their ranks over K (which are di-
rectly interpretable as the degrees of “higher-order Alexander polynomials”
of the knot K!). These ranks are an important measure of nontriviality
in the proofs of the next section. Henceforth we restrict our attention to
these (localized) higher-order Alexander modules.

Slightly more generally, if X is any compact space and φ : π1(X) → Γ
is any homomorphism where Γ is a poly-(torsion-free-abelian) group such
that Γ/Γ′ ∼= Z, then we may associate a (localized) higher-order Alexander
module AΓ(X) as above. Viewing φ as a system of twisted coefficients on
X, note that AΓ(X) is merely H1(X,R) ∼= H1(X,ZΓ)⊗R. We apply this
to two spaces, first to M , the 3-manifold obtained by 0-framed surgery on
K, and secondly to a 4-manifold W whose boundary is M . We see below
that if W is the complement of a slice disk for K or more generally if W is
an n-solution for M then the Alexander modules of M and W are strongly
related.

Moreover we can define a higher-order linking form

B`Γ : AΓ(M) := H1(M ;R) → HomR(AΓ(M),K/R) =: AΓ(M)#

as the composition of the Poincaré duality isomorphism to H2(M ;R), the
inverse of the Bockstein to H1(M ;K/R), and the usual Kronecker evalua-
tion map to AΓ(M)#. In the case that φ : π1(M) → Γ is the abelianization
map to Z we recover the classical AZ and B`Z.

Theorem 5.1. [COT, Theorem 2.13] There is a nonsingular hermitian
linking form

B`Γ : H1(M ;R) → H1(M ;R)#

defined on the higher-order Alexander module AΓ(M) = H1(M ;R).

Theorem 5.2. Suppose M is (n)-solvable via W and φ : π1(W ) → Γ
is a non-trivial coefficient system where Γ(n) = 0. Then the linking form
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B`Γ(M) is hyperbolic, and in fact the kernel P of

j∗ : H1(M ;R) → H1(W ;R)

is self-annihilating (P = P⊥ with respect to B`Γ).

It follows easily that the induced map B`Γ : P → (AΓ(M)/P)# is an
isomorphism [COT, Lemma 2.14], and thus, by examining the exact se-
quence

0 → P → AΓ(M) → AΓ(M)/P → 0

that rankK(P) = rankK(AΓ(M)/P) = (1/2) rankK(AΓ(M)). Therefore we
obtain the following crucial consequence of these theorems: the “size” of
the image of j∗ : H1(M ;R) → H1(W ;R), as measured by the rank over
K, is precisely one half of the “size” of AΓ(M). In particular, as long
as the latter is nontrivial, the image is nontrivial. But the “size” of the
higher-order Alexander modules is easy to establish for fibered knots and
turns out to be bounded below by d − 2 where d = rankQ(AZ(M)) is the
degree of the classical Alexander polynomial of K (whence the restriction
in Theorem 4.3 to knots with d = 4!). In [C, Corollary 4.8], this bound was
indeed implicitly established for any knot. Indeed, in [Ha], such bounds
were established explicitly for any closed 3-manifold using the Alexander
norm. But in the fibered case the situation is much simpler.

The nontriviality that results from this sequence of ideas is the key el-
ement in the proof of our Theorem 4.3 in the next section, where more
details will be given.

6. Proof of Theorem 4.3

Suppose R is a genus 2 fibered knot in S3 and M is the result of 0-
framed surgery on R. Suppose also that W is an (n)-solution for M . The
principle behind Theorem 4.3 is as follows. If Γ is some coefficient system
for W such that Γ(n) = 1, then one might expect H1(M ; ZΓ) to be finitely-
generated and generated by nth-order commutators of π1(M). Neither is
generally true. Certainly any nth-order commutator of π1(M) represents
an element of H1(M ; ZΓ), and certainly H1(M ; ZΓ) is finitely-generated
after localizing the coefficient system to R. In this section we show that
not only can we choose a finite number of nth-order commutators of π1(M)
that span H1(M ;R) for any particular W and Γ, but we show that such
a finite set can be chosen independently of W and Γ. By the techniques
of the last section, roughly one-half of these must survive in H1(W ;R).
This then translates quickly into the π1 statement that some of the nth-
order commutators of π1(M) must survive in π1(W )/π1(W )(n+1) giving
our desired injectivity result. This result is quite delicate and somewhat
mysterious.
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Note that M fibers over S1 with fiber a closed genus 2 surface Σ. Let
S denote π1(Σ) which can be identified (under inclusion) with π1(M)(1).
The inclusion j : M −→ W induces a map j : S −→ π1(W )(1). Let

G = π1(W )(1) = π1(W )
(1)
r . From this data, provided by the (n)-solution

W , we shall abstract certain algebraic properties and call this an algebraic
(n)-solution. For the following definition we let F = F 〈x1, x2, x3, x4〉
be the free group and consider F � S in the standard way with {xi}
corresponding to a symplectic basis of H1(S) so that the kernel is normally

generated by [x1, x2][x3, x4]. We adopt the short-hand Gk = G/G
(k)
r .

Definition 6.1. A homomorphism r : S → G is called an algebraic
(n)-solution (n ≥ 1) if the following hold:

(1) r∗ : H1(S; Q) −→ H1(G; Q) has 2-dimensional image and after
possibly re-ordering {x1, x2} and {x3, x4}, r∗(x1) and r∗(x3) are
nontrivial.

(2) For each 0 ≤ k ≤ n−1 the following composition is non-trivial even
after tensoring with the quotient field K(Gk) of ZGk:

H1(S; ZGk)
r∗−→ H1(G; ZGk) ∼= G(k)

r /[G(k)
r , G(k)

r ] � G(k)
r /G(k+1)

r .

We remark that if r : S −→ G is an algebraic (n)-solution then, for any
k < n it is an algebraic k-solution.

Proposition 6.2. The map j : S −→ G (induced by the (n)-solution W
above) is an algebraic (n)-solution.

We postpone the proof of this proposition.

Theorem 6.3. For each n ≥ 0 there is a finite set Pn of pairs of elements
of F (n) with this property: For any algebraic (n)-solution r : S −→ G (no
condition for n = 0), at least one such pair (which will be called a special
pair for r) maps to a ZGn-linearly independent set under the composition:

F (n) −→ S(n)/S(n+1) ∼= H1(S; ZSn)
r∗−→ H1(S; ZGn).

Assuming this theorem and the previous Proposition, we finish the proof
of Theorem 4.3. Apply Theorem 6.3 to find a finite set Pn−1 of pairs
of elements of F (n−1). Since S(n−1) = π1(M)(n), the union of the el-
ements of Pn−1 is a finite set {α1, . . . , αm} of elements of π1(M)(n) as
required by Theorem 4.3. Suppose W is an (n)-solution for M . Then
by Proposition 6.2 the induced map j : S −→ G is an algebraic (n)-
solution. Suppose n ≥ 2. Since j is also an algebraic (n − 1)-solution, by
Theorem 6.3, at least one pair (y, z) ∈ Pn−1 spans a 2-dimensional sub-
space (over K(Gn−1)) of H1(S; K(Gn−1)). But we claim that, if n ≥ 2,
H1(S; K(Gn−1)) has rank 2, so this subspace is all of H1(S; K(Gn−1)). To
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establish this claim, observe that the Euler characteristic of Σ can be com-
puted using homology with coefficients in the skew field K(Gn−1) (com-
pare [C, p.357]). Thus −2 = χ(Σ) = b0 − b1 + b2 where bi is the rank of

Hi(Σ; K(Gn−1)) = Hi(S; K(Gn−1)). The coefficient system S → G/G
(1)
r is

nontrivial by property (1) of the Definition 6.1. Hence b0 = 0 (see [COT,
Proposition 2.9]) and consequently b2 is also zero by Poincaré Duality.
Thus b1 = 2 as claimed. Then, applying part 2 of the definition of an
algebraic (n)-solution (with k = n − 1) we see that at least one of {y, z}
maps non-trivially under

F (n−1) −→ S(n−1) j−→ G(n−1)
r /G(n)

r .

If n = 1 at least one of {x1, x2} maps non-trivially by property (1) of the
definition of an algebraic 1-solution. Hence, in any case, at least one αi

has the property that j∗(αi) /∈ G
(n)
r = π1(W )

(n+1)

r . Since each αi actually
comes from F (n−1) and since π1(M − Σ) ∼= S, we can represent the αi by
simple closed curves in the complement of Σ, and hence in the exterior of
a Seifert surface (in S3) for the knot R. This is the collection {ηi} required
by Theorem 4.3 whose proof is thus completed.

Proof of Proposition 6.2. Since M is n-solvable via W , Theorem 6.4 below
applies with Γ = Z and n = 1 to show that j∗ : H1(M ; Q[t, t−1]) −→
H1(W ; Q[t, t−1]) has rank r/2 over Q where r = rankQH1(M∞; Q). But
for a fibered knot, H1(M ; Q[t, t−1]) ∼= H1(M∞; Q) is equal to H1(S; Q) and,
on the other hand, H1(W ; Q[t, t−1]) is given by

π1(W )(1)/π1(W )(2) ⊗Q ∼= G/G(1) ⊗Q ∼= H1(G; Q).

For a genus 2 fibered knot r = 4 and so j∗ has 2-dimensional image as

required by condition 1. Since the inclusion M
j−→ W is an isomorphism

on H1, there is a map f : W −→ S1 such that f−1 (regular value) is an
embedded 3-manifold Y whose boundary is Σ. We have a factorization of
j∗ as

H1(Σ; Q)
i∗−→ H1(Y ; Q)

k∗−→ H1(G; Q).

By the usual Poincaré Duality argument the kernel of i∗ is a Lagrangian
of the intersection form on H1(Σ; Q). In particular, in our setting, it has
dimension 2. This also implies that the image of i∗ has rank 2, so kernel j∗ =
kernel i∗. Suppose both x1 and x2 lay in kernel j∗ hence in kernel i∗. This is
a contradiction since x1 · x2 6= 0 in H1(Σ; Q). For if 〈, 〉 is the intersection
form H2(Y, ∂Y )⊗H1(Y ) −→ Q and ∂∗ : H2(Y, ∂Y ; Q) −→ H1(∂Y ; Q) then
〈z, i∗x2〉 = ∂∗z · x2 so if x1 lay in kernel i∗ then x1 would be of the form
∂∗z for some z, implying x1 · x2 = 0. Similarly at least one of {x3, x4} has
non-zero image. This completes the verification of property 1.
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Now suppose k ≤ n − 1. Let Γ = π1(W )/π1(W )
(k+1)
r so Γ is PTFA

and Γ(n) = {e}. Then Γ(1) = G/G
(k)
r ≡ Gk. By Theorem 6.4 below, the

map j∗ : H1(M ; ZΓ(1)[t±1]) −→ H1(W ; ZΓ(1)[t±1]) has rank at least 1 as a
map of ZΓ(1)-modules, i.e. ZGk-modules. But as ZGk modules this map is
identical to j∗ : H1(M∞; ZGk) −→ H1(W∞; ZGk) where W∞ is the infinite
cyclic cover of W . But H1(M∞; ZGk) = H1(S; ZGk) and H1(W∞; ZGk) =
H1(G; ZGk) and we have shown that j∗ is non-trivial even after tensoring

with K(Gk). Since the kernel of G
(k)
r /[G

(k)
r , G

(k)
r ] −→ G

(k)
r /G

(k+1)
r is Z-

torsion, it is an isomorphism after tensoring with K(Gk) (which contains
Q). Thus j is an algebraic (n)-solution. �

Theorem 6.4. Let M be zero surgery on a knot. Suppose M is n-solvable
via W and ψ : π1(W ) −→ Γ induces an isomorphism upon abelianization
where Γ is PTFA group and Γ(n) = {e}. Let r = rankQH1(M∞; Q) where
M∞ is the infinite cyclic cover of M . Then

j∗ : H1(M ; K[t±1]) −→ H1(W ; K[t±1])

has rank at least (r− 2)/2 if n > 1 and has rank r/2 if n = 1, as a map of
K vector spaces, where K is the quotient field of ZΓ(1).

Proof. Let R = K[t±1]. By Theorem 5.1 there exists a non-singular linking
form B` : H1(M ;R) −→ H1(M ;R)#. Let A = H1(M ;R). By Theo-
rem 5.2, P = kernel(j∗) is an R-submodule of A which is self-annihilating
with respect to B`. It follows that the map h : P −→ (A/P )# given by
p 7→ B`(p, ·) is an isomorphism [COT, Lemma 2.14] . Note that A/P is
isomorphic to the image of j∗. We claim that the rank over K of a finitely-
generated right R-module M is equal to the K-rank of the right R-module
HomR(M,K/R) ≡ M#. Since R is a noncommutative PID [J, Chapter
3][C, Prop.4.5], any finitely-generated R-module is a direct sum of cyclic
modules [Co, Thm2.4 p.494]. Hence our claim can be seen by examining
the case of a cyclic module M = R/p(t)R and verifying that in this case

M# ∼= (R/Rp(t)) ∼= R/p̄(t)R where p̄(t) is the result of applying the
involution from the group ring ZΓ. One also verifies that (just as in the
commutative case) the K rank of such a cyclic module is the degree of the
Laurent polynomial p(t). Since the degree of p̄(t) equals the degree of p(t),
we are done. Hence rankK(P ) = rankK(image j∗) and so this rank is at
least rankK(A)/2. It remains only to show that rankK(A) is at least r − 2
if n > 1 and is r if n = 1.

By hypothesis, M is 0-framed surgery on a knot R in S3. Then r is
interpretable as the degree of the Alexander polynomial of R. If n = 1 then
K = Q and A is the classical Alexander module, which is well known to
have Q-rank r. If n > 1, by Corollary 4.8 of [C], rankKH1(S

3\R; K[t±1]) ≥
r − 1. Since A depends only on π1(M) and the latter is obtained from
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π1(S
3\R) by killing the longitude, A is obtained from H1(S

3\R; K[t±1]) by
killing the K[t±1]-submodule generated by the longitude `. If n = 1 the
longitude is trivial. Since ` commutes with the meridian of R,

(t− 1)∗[`] = 0 ∈ H1(S
3\R; K[t±1])

implying that this submodule is a quotient of K[t±1]/(t − 1)K[t±1] ∼= K.
Hence, if n > 1, rankKA ≥ r − 2. �

Proof of Theorem 6.3. Set P0 = {(x1, x2)} and

P1 = {([xi, xj], [xi, xk])| i, j, k distinct}.

Supposing Pk has been defined, define Pk+1 as follows. For each (y, z) ∈
Pk include the following 12 pairs in Pk+1: ([y, yxi ], [z, zxi ]), ([y, z], [z, zxi ]),
([y, yxi ], [y, z]) for 1 ≤ i ≤ 4 and yx ≡ x−1yx.

Now we fix n and show Pn satisfies the conditions of the theorem. Fix an
algebraic (n)-solution r : S −→ G. We must show that there exists a special
pair in Pn corresponding to r. This is true for n = 0 since H1(S; ZG0) ∼=
H1(S; Z), so we assume n ≥ 1. Now we need some preliminary definitions.

Let F be the free group on {x1, . . . , x4}. Its classifying space has a
standard cell structure as a wedge of 4 circles W . Our convention is to

consider its universal cover W̃ as a right F -space as follows. Choose a
preimage of the 0-cell as basepoint denoted ∗. For each element w ∈ F ≡
π1(W ), lift w−1 to a path (w̃−1) beginning at ∗. There is a unique deck

translation Φ(w) of W̃ that sends ∗ to the endpoint of this lift. Then w

acts on W̃ by Φ(w). This is the conjugate action of the usual left action

as in [Ma]. Taking the induced cell structure on W̃ and tensoring with an
arbitrary left ZF -module A gives an exact sequence

(6.5) 0 −→ H1(F ;A)
d−→ A4 −→ A −→ H0(F ;A) −→ 0.

Specifically consider A = ZG where ZF acts by left multiplication via
a homomorphism φ : F −→ G. From the interpretation of H1(F ; ZG)
as H1 of a G-cover of W , one sees that an element g of ker(φ) can be
considered as an element of H1(F ; ZG). We claim that the composition

ker(φ) −→ H1(F ; ZG)
d−→ (ZG)4 can be calculated using the “free dif-

ferential calculus” ∂ = (∂1, . . . , ∂4) where ∂i : F −→ ZF . Specifically we
assert that the diagram below commutes. Henceforth we abbreviate maps
of the form (r, r, r, r) : (ZFn)4 −→ (ZGn)4 by r.

(6.6)

F (ZF )4

ker(φ) H1(F ; ZG) (ZG)4

-∂

?
φ

6

- -d
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where ∂i(xj) = δij, ∂i(e) = 0 and ∂i(gh) = ∂ig+(∂ih)g
−1 for each 1 ≤ i ≤ 4.

This can be seen as follows. Let e1, e2, e3, e4 denote lifts of the 1-cells of W

to W̃ that emanate from ∗ and are oriented compatibly with x1, . . . , x4. For
any word g ∈ F ≡ π1(W ), ∂g is (by definition) the ZF -linear combination
of the ei that describes the 1-chain determined by lifting a path representing

g to a path g̃ in W̃ starting at ∗. If g ∈ ker(φ) then g lifts to a loop in the
φ-cover of W (and H1(F ; ZG) is the first homology of this cover) and the
1-cycle it represents can be obtained by pushing down g̃ from the universal

cover. In other words the 1-chain g̃ in C1(W̃ ) ⊗ZF ZG is obtained from

the 1-chain in C1(W̃ ) by applying φ in each coordinate. It only remains
to justify the formula for ∂i. Note that the usual formula for the standard
left action is

di(gh) = di(g) + gd(h).

Our formula is obtained by setting ∂i = d̄i where − is the involution on
the group ring. Alternatively, this can be verified explicitly by induction
on the length of h. Suppose first that the length of h is 1. If h 6= xi then
the formula is clearly true, so consider ∂i(gxi). The path g̃x̃i, viewed as a
1-chain is obviously equal to the 1-chain given by g̃ (whose ith coordinate is
∂ig) plus a certain translate of ei. Since the path from ∗ to the initial point
of x̃i is g̃, this is the image of ei under the action of g−1 (in our convention).
Hence ∂i(gxi) = ∂ig + g−1 as claimed. Now it is a simple matter to verify
the inductive step by expressing h = h′ · h′′ where h′ and h′′ are of lesser
length. This is left to the reader.

Note that rπk : F → Fk → Gk is the same as πkr : F → S → G→ Gk.

Lemma 6.7. Given an algebraic (n)-solution (n ≥ 1) r : S −→ G, after
reordering {x1, x2} and {x3, x4} so that r∗(x1) and r∗(x3) are non-trivial
as per part (1) of Definition 6.1, for each k, 1 ≤ k ≤ n, there is at least
one pair (y, z) ∈ Pk with the following good properties:

(1) ∂4y = ∂4z = 0
(2) The vectors (rπk∂2y, rπk∂3y) and (rπk∂2z, rπk∂3z) (i.e. the vectors

consisting of the second and third coordinates of the images of y

and z under the composition F (k) πk∂−→ (ZFk)
4 r−→ (ZGk)

4) are right
linearly independent over ZGk. (Note that property (1) ensures that
the fourth coordinates are zero).

Proof that Lemma 6.7 =⇒ Theorem 6.3. The set Pn was defined above.
Given an algebraic (n)-solution r : S −→ G, re-order {x1, x2} and {x3, x4}
so that r∗(x1) and r∗(x3) are non-trivial as is possible by part (1) of Defi-
nition 6.1. Then the Lemma provides a pair (y, z) ∈ Pn that has the listed
good properties with respect to r. We verify that (y, z) is a special pair

with respect to r. Consider the diagram below. Recall Gn = G/G
(n)
r .



KNOT CONCORDANCE AND VON NEUMANN ρ-INVARIANTS 37

(6.8)

F (n) H1(F ; ZFn) (ZFn)4

H1(F ; ZGn) (ZGn)4

S(n) H1(S; ZGn) (ZGn)4/ 〈d′(T )〉

-

?

r(n)

-d

?

r∗

?

(rn)4

-d′

?

i∗

?
- -d′′

The horizontal composition on top is πn∂. The right-top square com-
mutes by naturality of the sequence (6.5) above. Let T ∈ F denote
the single relation such that S = F/ 〈T 〉. Since T is in the kernel of
F −→ S −→ Gn, it represents an element of H1(F ; ZGn) and it generates
the kernel of the epimorphism i∗. Since d and d′ are monomorphisms, d′′ is
a monomorphism. Hence to show (y, z) is special, it suffices to show that
the set of three 4-tuples {rπn∂(y), rπn∂(z), d′T} is ZGn-linearly indepen-
dent in (ZGn)4. This will follow immediately from the good properties of
y and z once we verify that the 4th coordinate of d′T is non-zero. The stan-
dard relation T after our possible re-ordering, is either g[x3, x4] or g[x4, x3]
where g is either [x1, x2] or [x2, x1]. If d stands for any one of the ∂i then
one calculates that d(g−1) = −(dg)g and

d([g, h]) = dg + (dh)g−1 − (dg)gh−1g−1 − (dh)hgh−1g−1.

Using these one calculates that ∂4(g[x3, x4]) = (x−1
3 − [x4, x3])g

−1 and
∂4(g[x4, x3]) = (1 − x4x

−1
3 x−1

4 )g−1. The 4th coordinate of d′T is rπn∂4(T )
by diagram (6.6). If this vanished in ZGn then its image rπ1∂4(T ) would

certainly vanish in ZG1 = Z[G/G
(1)
r ] (recall that n ≥ 1). But rπ1∂4(T ) is

either r(x−1
3 )− 1 or 1− r(x−1

3 ), which can only vanish if r(x3) is trivial in

G/G
(1)
r = H1(G; Z)/torsion, i.e. r∗(x3) = 0 in H1(G; Q), contradicting our

choice of x3. Thus the 4th coordinate of d′T is non-trivial. This completes
the verification that the Lemma implies the Theorem. �

Proof of Lemma 6.7. The integer n ≥ 1 is fixed throughout. By definition
of an algebraic (n)-solution we may re-order so that r∗(x1) and r∗(x3) are
non-trivial in H1(G; Q) = G1 ⊗ Q. This implies that rπ1(x1) and rπ1(x3)
are non-trivial in G1. We will prove the Lemma by induction on k. We
begin with k = 1. Consider the pair

(y, z) = ([x1, x2], [x1, x3]) ∈ P1.

We claim that (y, z) has the good properties. Certainly ∂4y = ∂4z =
0 since x4 does not appear in the words y and z. Similarly the third
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coordinate of the image of y and the second coordinate of the image of z are
zero. Hence to establish the second good property, it suffices to show that
rπ1∂2y 6= 0 6= rπ1∂3z. Since ∂2y = x−1

1 − [x2, x1] and ∂3z = x−1
1 − [x3, x1]

this follows since rπ1(x
−1
1 ) and rπ1(x

−1
3 ) are non-trivial in G1. Therefore

the base of the induction (k = 1) is established.
Now suppose the conclusions of the Lemma have been established for

1, . . . , k where k < n. We establish them for k + 1. Let (y, z) ∈ Pk be a
pair that has the good properties. This means that ∂4y = ∂4z = 0 and
that the vectors (rπk∂2y, rπk∂3y) and (rπk∂2z, rπk∂3z) are (right) linearly
independent over ZGk. Consider the following 3 elements of Pk+1:

([y, yx1 ], [z, zx1 ]), ([y, z], [z, zx1 ]), ([y, yx1 ], [y, z])

where yx = x−1yx. We will show that at least one of these pairs (yk+1, zk+1)
has the good properties, finishing the inductive proof of Lemma 6.7.

First note that in all cases ∂4yk+1 = ∂4zk+1 = 0 since ∂4y = ∂4z = 0. For
the remainder of this proof we write x for x1, suppressing the subscript.
We need to show that there is at least one of the 3 pairs (yk+1, zk+1) such
that the vectors (rπk+1∂2yk+1, rπk+1∂3yk+1) and (rπk+1∂2zk+1, rπk+1∂3zk+1)
are ZGk+1-linearly independent.
Case 1: Both rπk+1(y) and rπk+1(z) are non-trivial in Gk+1.

In this case we will show that the pair (yk+1, zk+1) = ([y, yx], [z, zx])
satisfies property (2). Let d be either ∂2 or ∂3. One has dx = 0 and
dyx = (dy)x. Using this and our previous computations of d([g, h]), one
computes that d([y, yx]) = (dy)p where

p = 1 + xy−1 − (yx)−1[yx, y]− x[yx, y].

Similarly d([z, zx]) = (dz)q where q = 1+xz−1−(zx)−1[zx, z]−x[zx, z]. We
must show the vectors (rπk+1((∂2y)p), rπk+1((∂3y)p)) and (rπk+1((∂2z)q),
rπk+1((∂3z)q)) are ZGk+1-linearly independent. Note that the first vector
is a right multiple of vk+1 = (rπk+1∂2y, rπk+1∂3y) by rπk+1p and the second
is a right multiple of wk+1 = (rπk+1∂2z, rπk+1∂3z) by rπk+1q. The right
factor rπk+1p is seen to be non-trivial in ZGk+1 as follows. First observe
that [y, yx] ∈ F (k+1) so rπk+1([y, y

x]) = 1. Then note

rπk+1p = rπk+1(1 + xy−1 − (yx)−1 − x)

is a linear combination of 4 group elements e, rπk+1(xy
−1), rπk+1((y

x)−1),
and rπk+1(x) in Gk+1. For rπk+1p to vanish in ZGk+1 the elements must
pair up in a precise way and in particular such that rπk+1(x) = rπk+1(xy

−1)
in Gk+1. This is a contradiction since rπk+1(y) 6= e by hypothesis. No other
pairing is possible because the projections of the 4 elements to G1 are e,
rπ1(x), e and rπ1(x) and we have already noted that rπ1(x) is non-trivial
in G1. An entirely similar argument shows that the right factor rπk+1q is
non-trivial, using the non-triviality of rπk+1(z). Since these right factors
are non-trivial and ZGk+1 has no zero divisors, the linear independence of
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{vk+1, wk+1} would be sufficient to imply the linear independence of the
original set of vectors. Recall that our hypothesis on (y, z) ensures that
the set

{vk, wk} = {(rπk∂2y, rπk∂3y), (rπk∂2z, rπk∂3z)}
is linearly independent in ZGk. Note that vk and wk are the images of vk+1

and wk+1 under the canonical projection (ZGk+1)
2 −→ (ZGk)

2. We assert
that the linear independence of {vk, wk} implies the linear independence of
{vk+1, wk+1} since the kernel of Gk+1 −→ Gk is a torsion free abelian group.
Details follow. This will complete the verification, under the assumptions
of Case 1, that at least one pair (yk+1, zk+1) has good properties.

To establish our assertion above, consider more generally an arbitrary
endomorphism f of free right ZGk+1 modules f : (ZGk+1)

2 −→ (ZGk+1)
2

given by

(
a b
c d

)(
x
y

)
= (ax + by, cx + dy) for a, b, c, d, x, y ∈ ZGk+1.

Then f induces f̄ : (ZGk)
2 −→ (ZGk)

2 given by the matrix

(
ā b̄
c̄ d̄

)
where

ā is the projection of a. Suppose that f̄ is injective. Let H = G
(k)
r /G

(k+1)
r

and note that ZGk+1 ⊗Z[H] Z ∼= ZGk where a ⊗ 1 7→ ā, as ZGk+1 − Z
bimodules. Moreover (under this identification) f descends to

f ⊗ id : (ZGk)
2 −→ (ZGk)

2

sending (z̄, w̄) (for z, w ∈ ZGk+1) to (āz̄ + c̄w̄, b̄z̄ + d̄w̄), thus agreeing
with f̄ above. Since H is torsion-free-abelian, a theorem of Strebel [Str,
Section 1] ensures that the injectivity of f ⊗ id = f̄ implies the injectivity
of f . An application of this general fact with {(a, c), (b, d)} = {vk+1, wk+1}
shows the latter set is right linearly independent.
Case 2: rπk+1(y) = e and rπk+1(z) 6= e in Gk+1.

In this case we claim that the pair (yk+1, zk+1) = ([y, z], [z, zx]) satisfies
the good property (2). We see that dyk+1 = dy(1 − z−1[z, y]) + dz(y−1 −
[z, y]) where d = ∂2 or d = ∂3. Thus

rπk+1dyk+1 = (rπk+1dy)(1− rπk+1(z
−1)).

Therefore, one of the vectors, (rπk+1∂2yk+1, rπk+1∂3yk+1) is a right multi-
ple of the vector vk+1 = (rπk+1∂2y, rπk+1∂3y) by a non-zero divisor 1 −
rπk+1(z

−1). Hence, just as in Case 1, we can abandon the former and con-
sider vk+1. Recall also that dzk+1 = (dz)q as in Case 1. One checks that
rπk+1q 6= 0 in ZGk+1 just as in Case 1 using the fact that rπk+1(z) 6= e.
Thus we can reduce to considering the vector wk+1 = (rπk+1∂2z, rπk+1∂3z)
as above. We finish the proof of Case 2 just as in Case 1, using the fact
that our hypothesis guarantees that the vectors called wk and vk are lin-
early independent in ZGk.
Case 3: rπk+1(y) 6= e and rπk+1(z) = e in Gk+1.
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In this case we claim that the pair (yk+1, zk+1) = ([y, yx], [y, z]) sat-
isfies the good property (2). Following Case 2, rπk+1dzk+1 is equal to
(rπk+1dz)(rπk+1(y

−1) − 1) where d = ∂2 or ∂3. Moreover dyk+1 = (dy)p.
One finishes just as in Case 2.
Case 4: rπk+1(y) = rπk+1(z) = e in Gk+1.

We claim that this case cannot occur. For recall that, by the inductive
hypothesis, the pair (y, z) ∈ Pk has the good properties for the algebraic
(n)-solution r where 1 ≤ k ≤ n − 1. But r is also an algebraic k-solution
since k < n and by the proof of Lemma 6.7 =⇒ Theorem 6.3, the pair
(y, z) is a special pair for r. Thus under the composition

F (k) −→ S(k) −→ H1(S; ZSk)
r∗−→ H1(S; ZGk)

the set {y, z} maps to a linearly independent set. Since H1(S; ZGk) has
rank 2 (as we showed in the paragraph following the statement of Theo-
rem 6.3), this set is a basis of H1(S; K(Gk)). Since r is also an algebraic
(n)-solution and k ≤ n− 1, by property (2) of Definition 6.1 the composi-
tion of the above with the map

H1(S; ZGk)
r∗−→ H1(G; ZGk) ∼= G(k)

r /G(k+1)
r

is non-trivial when restricted to {y, z}. On the other hand this combined

map F (k) −→ G
(k)
r /G

(k+1)
r is clearly given by

y 7→ rπk+1(y) and z 7→ rπk+1(y)

so it is not possible that both rπk+1(y) and rπk+1(z) lie in G
(k+1)
r . Therefore

Case 4 is not possible.
This completes the proof that one of the 3 new pairs (yk+1, zk+1) satisfies

the good properties and hence concludes the inductive step of our proof
of Lemma 6.7, as well as Theorem 6.3. �
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