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1 Introduction

This paper is a report on our work trying to relate 2-dimensional field theories
and elliptic cohomology, a subject pioneered by Graeme Segal two decades
ago [Se1]. The version of elliptic cohomology we have in mind is the topo-
logical modular form theory developed by Mike Hopkins and Haynes Miller
[Ho] and featured in talks by Matt Ando and Mike Hopkins at this confer-
ence. The name for this cohomology theory is motivated by the fact that the
cohomology ring of a point is rationally isomorphic to the ring of integral
modular forms (for the full modular group SL2(Z)). We will be interested
in the periodic version of this cohomology theory, denoted TMF ∗(X), which
is periodic of period 242. There is a graded ring homomorphism

TMF ∗(point) −→MF ∗ =
⊕
n∈Z

MF n (1)

where MF n is the abelian group of weak integral modular forms of weight
−n

2
(the adjective weak means that we only require the modular forms to be

meromorphic at infinity; see Definition 9).
On some philosophical level, it is obvious that there should be a close

relationship between elliptic cohomology and field theories. The first version
of elliptic cohomology constructed by Landweber and Stong [La] was defined
as the cohomology theory built from a genus known as the universal elliptic
or Ochanine genus, which associates to a closed spin manifold M a (level 2)
modular form ϕ(M). Witten provided a physical interpretation of ϕ(M) as
the partition function of a (not yet rigorously defined) 2-dimensional field
theory associated to M (see [Wi1]). There is an analogous story relating
TMF and the Witten genus which associates to a closed string manifold M
a modular form W (M). As Witten explains in the same paper, W (M) also
has a heuristic interpretation as the partition function of a 2-dimensional
field theory. This field theory is known as the non-linear σ-model of M .

Alas, two decades later, there is still no geometric interpretation of elliptic
cohomology in field theoretic terms despite the efforts by many mathemati-
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cians; some more recent ones include [HK] and [BDR]. In this paper we give
a conjectural description of the elliptic cohomology of a manifold X in terms
of supersymmetric 2|1-dimensional Euclidean field theories over X (see 3).
We offer two kinds of evidence for our conjecture:

• we show that supersymmetric field theories of dimension 0|1 (resp. 1|1)
over X lead to ordinary cohomology (resp. K-theory) of X (see Theo-
rem 2);

• we show that the partition function of a supersymmetric 2|1-dimensional
Euclidean field theory is a weak integral modular form(Theorem 4).

In the following section, we will give precise statements of these results and
our conjecture, deferring the definition of field theories to later sections. A
detailed description of the content of the sections can be found at the end of
that section.

2 Results and conjectures

Our definition of EFT’s (which is short for Euclidean field theories) is un-
fortunately pretty involved, and while about half of this paper is devoted
to explaining the definition, this is by no means a complete account. For-
tunately, we can explain the relationship between EFT’s and generalized
cohomology theories without first defining EFT’s, and this is what we will
do in this section.

In Definition 41 we will define d|∆-dimensional Euclidean field theories
of degree n (or central charge n). These field theories are supersymmetric for
δ > 0; the non-negative integer δ is the number of odd symmetries present in
the theory. More generally, if X is a smooth manifold, we will define EFT’s
over X, which can be thought of as families of EFT’s parametrized by X.
A Euclidean field theory over X should be thought of as a geometric object
over X; for example we will see in Proposition 56 that a closed n-form over
X can be interpreted as a 0|1-dimensional EFT of degree n over X (and vice
versa). Results of Florin Dumitrescu [Du] can be interpreted as showing that
a vector bundle with connection over X gives rise to a 1|1-dimensional EFT
over X of degree 0.

Like differential forms or vector bundles with connections, Euclidean field
theories over X of the same dimension d|δ can be added and multiplied.
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They can be pulled back via smooth maps; i.e., a smooth map f : Y → X
determines a functor

f ∗ : d|δ-EFTn(X) −→ d|δ-EFTn(Y )

between categories (and these functors compose strictly, unlike the case of
vector bundles where (fg)∗E is isomorphic, but not equal to g∗f ∗E). We
call two field theories E0, E1 ∈ d|δ-EFTn(X) concordant if there exists a
field theory E ′ ∈ d|δ-EFTn(X × R) such that ι∗tE

′ ∼= Et for t = 0, 1, where
ιt : X → X × R is the inclusion map x 7→ (x, t). We observe that the
equivalence relation concordance can be defined for geometric objects over
manifolds for which pull-backs and isomorphisms make sense. We note that
by Stokes’ Theorem two closed n-forms on X are concordant if and only if
they represent the same deRham cohomology class; two vector bundles with
connections are concordant if and only if they are isomorphic as vector bun-
dles (i.e., disregarding the connections). Passing from an EFT over X to its
concordance class forgets the geometric information while retaining the topo-
logical information. We will write d|δ-EFTn[X] for the set of concordance
classes of d|δ-dimensional supersymmetric EFT’s of degree n over X.

Theorem 2. Let X be a smooth manifold. Then there are natural ring
isomorphisms

0|1-EFTn(X) ∼=

{
Ωev
cl (X; C) n even

Ωodd(X; C) n odd

1|1-EFTn[X] ∼= Kn(X)

where Ωev
cl (X; C) (resp. Ωodd

cl (X; C)) stands for the even (resp. odd) closed
differential forms on X.

The statement about EFT’s of dimension 0|1 is joint work with Henning
Hohnhold and Matthias Kreck [HKST]. It follows that

0|1-EFTn[X] ∼=

{
Hev(X; C) n even

Hodd(X; C) n odd

where Hev(X; C) (resp. Hodd(X; C)) stands for the direct sum of the even
(resp. odd) cohomology groups of X.
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We want to mention that via the above isomorphisms the Chern-character
Ch: K0(X) → Hev(X; C) corresponds to a homomorphism 1|1-EFT0[X] →
0|1-EFT0[X] given by product with the circle (see ??). This was proven in
Fei Han’s thesis [Ha].

Conjecture 3. There are natural ring isomorphisms

2|1-EFTn[X] ∼= TMF n(X)

At this point, we don’t have a map relating these two rings, not even if
X is just a point. We do have a strategy to show that 2|1-EFTn[X] is a
cohomology theory. The following theorem is the reason for our expectation
that 2|1-EFT∗[X] agrees with TMF ∗(X) rather than some other cohomology
theory.

Theorem 4. Let E be a Euclidean field theory of dimension 2|1 and degree n
(i.e., E ∈ 2|1-EFTn(pt) in the notation above). Then the partition function
of E (see Definition 60) belongs to MF n.

We want to emphasize that supersymmetry is a crucial feature. Non-
super symmetric field theories (i.e., theories of dimension d|0) don’t seem
to be interesting from an algebraic topology point of view. We’ll show that
concordance classes of 0|0-dimensional EFT’s are trivial (see paragraph fol-
lowing Lemma 53), and suspect the same holds for field theories of dimension
1|1 and 2|1.

Let us briefly summarize the content of the paper. Sections 2-6 are de-
voted to the definition of Euclidean field theories. Our Euclidean field the-
ories over a manifold are elaborate variants of Segal’s axioms for conformal
field theories. In section 3 we start with Segal’s definition, describe inter-
nal categories as a convenient language to axiomatize field theories, carefully
construct the bordism category we will be working with and arrive at a pre-
liminary definition of Euclidean field theory (Definition ??). The next three
sections add bells and whistles: in section 3.3 we define what a d-dimensional
field theory is (Definition 31) by adding the smoothness requirement, in sec-
tion 4 we define supersymmetric Euclidean field theories (Definition 41), and
in section 5 we define field theories of non-zero degree and twisted field the-
ories. Section 7.1 (resp. 7.2 resp. 7.3) outlines our results on field theories
of dimension 0|1 (resp. 1|1 resp. 2|1). The reader might find the more con-
crete discussion in these sections a helpful illustration of the more abstract
sections discussing the axiomatics of field theories. Section 6 explains how
to evaluate d-dimensional field theories on closed d manifolds.
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2.1 Segal’s definition of a conformal field theory

In this section we start with Graeme Segal’s definition of a 2-dimensional
conformal field theory and elaborate suitably to obtain the definition of a
d-dimensional Euclidean field theory. Segal has proposed an axiomatic de-
scription of 2-dimensional conformal field theories in a preprint that widely
circulated for a decade and a half (despite the “do not copy” advice on
the front) before it was published as [Se2]. In the published version, Segal
added a forword/postscript commenting on developments since the original
manuscript was written in which he proposes the following definition of con-
formal field theories.

Definition 5. (Segal [Se2, Postscript to section 4]) A 2-dimensional
conformal field theory (H,U) consists of the following two pieces of data:

1. A functor Y 7→ H(Y ) from the category of closed oriented smooth
1-manifolds to locally convex complete topological vector spaces, which
takes disjoint unions to (projective) tensor products, and

2. For each oriented cobordism Σ, with conformal structure, from Y0 to
Y1 a linear-trace class maps U(Σ) : H(Y0)→ H(Y1), subject to

(a) U(Σ′ ◦ Σ) = U(Σ) ◦ U(Σ′) when cobordisms are composed, and

(b) U(Σq Σ′) = U(Σ)⊗ U(Σ′).

(c) If f : Σ → Σ′ is a conformal equivalence between conformal bor-
disms, the diagram

H(Y0)
U(Σ) //

H(f|Y0
)

��

H(Y1)

H(f|Y0
)

��
H(Y ′0)

U(Σ′) // H(Y ′1)

(6)

is commutative.

Furthermore, U(Σ) must depend smoothly on the conformal structure of Σ.
Condition (c) is not explicitly mentioned in Segal’s postscript to section

4, but it corresponds to identifying conformal surfaces with parametrized
boundary in his bordisms category C if they are conformally equivalent rel-
ative boundary, which Segal does in the first paragraph of §4.
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We note that the first condition implies that H sends the empty set
(viewed as a closed 1-manifold which is the unit w.r.t. taking disjoint union)
to the vector space C (the unit w.r.t. the tensor product). If Σ is a closed
oriented bordism, we can interpret it as a bordism from ∅ to ∅, and hence

U(Σ) ∈ Hom(H(∅), H(∅)) = Hom(C,C) = C.

Definition 7. The partition function of a conformal field theory (H,U) is
the function

Z : R2
+ = {τ ∈ R2 = C | im τ > 0} → C given by τ 7→ U(Tτ ),

where Tτ := C/(Zτ + Z1) is the torus obtained from C by dividing out the
lattice Zτ + Z1 ⊂ C.

There are a lot of possible variations of Definition 5. For example, confor-
mal structures on the bordisms could be replaced by other types of geometric
structures; e.g., no geometric structure on bordisms leads to topological field
theories, Riemannian metrics lead to Riemannian field theories, and Eu-
clidean structures (i.e., flat Riemannian metrics) lead to what we like to call
Euclidean field theories.

Remark 8. It seems convenient to label the various types of field theories
by the type of geometry on the bordisms (in physics lingo the worldsheets).
For us it is important to differentiate between the two types of field theories
determined by a Riemannian structure and a Euclidean structure (= flat Rie-
mannian metric), respectively. It seems best to us to call the corresponding
field theories Riemannian field theories and Euclidean field theories, despite
the fact that this clashes with common use in physics, where the adjective
Euclidean is used to indicate that one is dealing with Riemannian metrics
rather than Lorentzian metrics, while flatness is not usually implied.

Other variations of the theme include replacing 2-dimensional bordisms
by d-dimensional bordisms to obtain field theories of dimension d or by su-
per manifolds of dimension d|δ, furnished with appropriate super versions
of conformal, Riemannian or Euclidean structures to obtain field theories of
dimension d|δ. Another variation is to equip all manifold Y and bordisms
Σ with compatible maps to a fixed smooth manifold X; we will refer to the
resulting theories as field theories over X.
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In the next subsection we will discuss why we consider Euclidean field
theories of dimension 2|1 to be the most promising flavor of field theories to
relate to TMF . In the ensuing sections, we will elaborate Segal’s axioms in
the following ways:

• We will show in section 3.1 that internal categories provide a categorical
framework for Segal’s definition in the sense that a field theory in the
sense of Definition 5amounts to a functor between internal categories.

• In section 3.2 we will define the internal Euclidean bordism category
d-EB that is the domain category in our preliminary definition 21 of a
Euclidean field theory.

• In section 3.3 we will incorporate a form of smoothness in our definition
of Euclidean field theory that is stronger than Segal’s and that in our
previous paper [ST]. The new requirement is that the vector space
H(Y ) depends smoothly on Y (see Definition 31).

• In section sec:susy we will will define super symmetric field theories
(Definition 41).

• Our use of internal categories makes it possible to give a very concise
definition of a field theory of a non-zero degree (aka central charge; see
Definition ??) in section 5.

2.2 Which kind of field theories are appropriate?

For any flavor of field theory one can ask whether concordance classes of that
type of field theory define a generalized cohomology theory. In this section
we want to address the more specific question which type of field theory
we should consider if we hope that their concordance classes correspond to
TMF -cohomology classes. Such a field theory of degree n should in particular
determine an element in TMF n(pt) and hence via the homomorphism (1)
a weak integral modular form of weight −n

2
. In our approach, the basic

connection between 2-dimensional field theories and modular forms should
be provided by associating to a field theory its partition function. Hence it is
crucial to look for field theories whose partition functions are in fact integral
modular forms (or rather modular functions, since for now we are looking
at field theories of degree 0). After recalling what an integral modular form

8



is, we’ll discuss the modularity properties of the partition functions for the
kinds of field theories mentioned above.

Definition 9. A modular form of weight k is a holomorphic function f : R2
+ →

C with the transformation property

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ) for all ( a bc d ) ∈ SL2(Z).

In addition, f is required to be holomorphic at i∞ in the following sense. The
above transformation property for the matrix ( 1 1

0 1 ) implies f(τ + 1) = f(τ),
and hence f can be thought of as a holomorphic function of q = e2πiτ in the
punctured open disc D2

0. The Laurent series expansion

f(q) =
∑
n∈Z

anq
n

is called the q-expansion of f . We note that τ → i∞ corresponds to q → 0,
which motivates the terminology that f(τ) is holomorphic at i∞ if f(q)
extends to a holomorphic function over the disc, i.e., if an = 0 for n < 0.
There doesn’t seem to be a standard terminology for holomorphic functions
f : R2

+ → C with the transformation property of a modular form such that
f(q) has at most a pole at 0. We will refer to such functions as weak modular
forms. A (weak) modular form is called integral if the coefficients an are
integers.

We should mention that this is a very low-tech characterization of inte-
grality; there is a much more conceptual definition of integral modular forms
as sections of certain line bundles over the stack of elliptic curves over ar-
bitrary commutative rings. It is this high-tech definition that evolved into
the definition of topological modular forms. It would be extremely inter-
esting to see whether an integral modular form could be constructed from
2|1-dimensional Euclidean field theories by directly associating to any ellip-
tic curve over a commutative ring R an element of an appropriate rank one
module over R. One might hope that such a construction can be embellished
to produce a topological modular form which provides a lift of the integral
modular form partition function provided by the theorem above. Unfortu-
nately, our proof of the theorem is quite different: no elliptic curves appear
(other than elliptic curves over C and their super analogues), and we only
use the low-tech characterization of integrality by by using supersymmetry to
show that the q-expansion of the partition function has integral coefficients.
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Topological field theories. We note that since any two tori are diffeomor-
phic, the commutative diagram (6) implies that the partition function
is constant.

Conformal field theories. As documented by our previous paper [ST], we
used to think that (supersymmetric) conformal field theories are the
most promising type of field theory to relate to TMF , since its parti-
tion function has the transformation properties of a modular function
(modular form if we consider field theories of degree n that we’ll define
in § 5). This follows from diagram (6) and the fact that the tori Tτ , Tτ ′
associated to points τ , τ ′ of the upper half plane R2

+ are conformally
equivalent if and only if τ and τ ′ are in the same orbit of the standard
action of SL2(Z) on R2

+. Conformal field theories which are holomor-
phic (cf. [HK]) have in particular holomorphic partition functions.

While the partition functions of holomorphic conformal field theories
are weak modular forms, there are two problems. One is that we don’t
see an argument showing integrality of these partition functions. The
other problem is that there seem to be too few conformal field theories
to obtain all modular forms in the image of Ψ: TMF ∗(pt)→MF ∗ as
partition functions. For example, if M is a closed string manifold of
dimension n, its Witten genus W (M) is known to be in the image of
Ψ (this follows from Thm. 6.25 and Cor. 6.23 of [Ho]). As explained in
the introduction, W (M) should be the partition function of the ‘non-
linear σ-model’ of M , a field theory which so far has not been defined
rigorously. However, it is clear from perturbative calculations that this
field theory cannot be conformal unless M satisfies some very strong
geometric hypothesis including being Ricci flat.

Quantum field theories. At first sight this seems to be a silly choice, since
for τ, τ ′ ∈ R2

+ in the same orbit of the SL2(Z)-action, the tori Tτ , Tτ ′
are not necessarily isometric and hence there is no reason to expect the
partition function to transform as a modular function.

In the fall of 2006 Witten mentioned in a conversation that the partition
function of a supersymmetric quantum field theory is invariant under
the SL2(Z)-action. We found a way to show this in the context of
our geometric definition, thus leading to Theorem 62. Our previous
version of this result, Theorem 3.30 of [ST] held only for conformal
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field theories. Our argument for the modular invariance uses our new
axiom that the vector spaces H(Y ) depend smoothly on Y .

Euclidean field theories. A Riemannian field theory always gives a Eu-
clidean field theory (by restricting to flat Riemannian manifolds). So,
a Riemannian field theory is more complicated object than a Euclidean
field theory. For example, a 2-dimensional Riemannian field theory can
be evaluated on any closed surface Σ to get a number (which depends
on the Riemannian metric on Σ), while a Euclidean field theory can
only be evaluated on surfaces of genus one, since by the Gauss-Bonnet
Theorem, only surfaces of genus one admit flat metrics. In particular,
our Theorem 62 is stronger than the same statement for Riemannian
field theories. Put another way, higher genus surfaces aren’t involved
when trying to relate field theories to modular forms. The same should
be true for topological modular forms, since they are constructed via a
sheaf of spectra over the stack of elliptic curves (which over C are tori
with conformal structures).

Supersymmetric Euclidean field theories. As mentioned before, super-
symmetry is crucial to ensure the desired properties (holomorphic-
ity, transformation property, integrality) of the partition function of
a 2-dimensional field theory. While we haven’t defined yet what an
Euclidean field theory of dimension d|δ is, we want to mention that for
our purposes we want field theories with a minimum of supersymme-
try, i.e., with δ as small as possible for given d. It turns out that for
d = 0, 1, 2, the minimum value of δ > 0 is δ = 1. Moreover, there is
a unique flavor of supersymmetric Euclidean field theories for 0|1, 1|1
and two flavors for 2|1. The two flavors of 2|1-dimensional theories can
be distinguished by their partition function – one leads to holomorphic,
the other to anti-holomorphic partition functions. In this paper we’ll
be interested only in the first type, and we refer to them when we talk
about 2|1-dimensional EFT’s.

3 Euclidean field theories

3.1 Internal categories
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We note that the data (H,U) in Segal’s definition of a conformal field theory
(Definition 5) can be interpreted as a pair of symmetric monoidal functors.
Here H is a functor from the category of closed oriented smooth 1-manifolds
to the category of locally convex topological vector spaces. The domain of the
functor U is the category whose objects are conformal bordisms and whose
morphisms are conformal equivalences between conformal bordisms. The
range of U is the category whose objects are trace-class operators between
complete locally convex topological vector spaces and whose morphisms are
commutative squares like diagram (6). The monoidal structure on the do-
main categories of H and U is given by the disjoint union, on the range
categories it is given by the tensor product.

Better yet, the two domain categories involved fit together to form an
internal category in the category of symmetric monoidal categories. The
same holds for the two range categories, and the pair (H,U) is a functor be-
tween these internal categories. It turns out that internal categories provide
a convenient language not only for field theories a la Segal; rather, all refine-
ments that we’ll incorporate in the following sections fit into this framework.
What changes is the ambient category which is the category of symmetric
monoidal categories now, and will be replaced later by the category of sym-
metric monoidal categories which are fibered over the category of manifolds
(in section 3.3) resp. super manifolds (in section 4).

Internal categories are described e.g. in section XII.1 of the second edition
of Mac Lane’s book [McL]. Unfortunately, his version of internal categories
is too strict to define the internal bordism category we need as domain. A
suitable weakened version of internal categories and functors are defined for
example by Martins-Ferreira in [M] who calls them pseudo categories. Since
(weak) internal categories are central for our description of field theories,
we will describe them in detail. We start with the definition of an internal
category in an ambient category A. Then we explain why this is too strict
to define our internal bordism category and go on to show how this notion
can be suitably weakened if the ambient category A is a strict 2-category.
Throughout we will be working with a version of internal categories without
units obtained by deleting all data and properties having to do with units.

Definition 10. (Internal Category) Let A be category with pull-backs
(here A stands for ambient). An internal category (without units) in A con-
sists of two objects C0,C1 ∈ A and three morphisms

s, t : C1 −→ C0 c : C1 ×C0 C1 −→ C1
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(source, target and composition) such that the following diagrams are com-
mutative. They express the usual axioms for a category. The commutativity
of

C1

t
��

C1 ×C0 C1

c

��

π1oo π2 // C1

s

��
C0 C1

too s // C0

(11)

specifies source and target of a composition; the commutativity of the dia-
gram

C1 ×C0 C1 ×C0 C1
c×1 //

1×c
��

C1 ×C0 C1

c

��
C1 ×C0 C1

c // C1

(12)

expresses the associativity of the multiplication c.

Definition 13. Following MacLane (§XII.1), a functor f : C → D between
internal categories C,D in the same ambient category A is a pair of morphisms
in A

f0 : C0 −→ D0 f1 : C1 −→ D1.

Thought of as describing the functor on objects resp. morphisms, they are
required to make the obvious diagrams commutative:

C1
s //

f1

��

C0

f0

��
D1

s // D0

C1
t //

f1

��

C0

f0

��
D1

t // D0

(14)

C1 ×C0 C1

cC
��

f1×f1 // C1

cD

��
D1 ×D0 D1

f1 // D1

(15)

As mentioned before, we would like to regard Segal’s pair (H,U) as a
functor between internal categories where the ambient category A is the cat-
egory of symmetric monoidal categories. However, this is not quite correct
due to the lack of associativity of the internal bordism category. In geo-
metric terms, the problem is that if Σi is a bordism from Yi to Yi+1 for
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i = 1, 2, 3, then (Σ3 ∪Y3 Σ2) ∪Y2 Σ1 and Σ3 ∪Y3 (Σ2 ∪Y2 Σ1) are not strictly
speaking equal, but only canonically conformally equivalent. In categorical
terms, this means that the diagram (12) is not commutative; rather, the
conformal equivalence between these bordisms is a morphism in the cate-
gory C1 whose objects are conformal bordisms. This depends functorially on
(Σ3,Σ2,Σ1) ∈ C1 ×C0 C1 ×C0 C1 and hence it provides an invertible natural
transformation α between the two functors of diagram (12)

C1 ×C0 C1 ×C0 C1
c×1 //

1×c
��

C1 ×C0 C1

c

��
C1 ×C0 C1 c

//

α
∼=

2:mmmmmmmmmmmm

mmmmmmmmmmmm
C1

(16)

The moral is that we should relax the associativity axiom of an internal
category by replacing the assumption that the diagram above is commuta-
tive by the weaker assumption that the there is an invertible 2-morphism
α between the two compositions. This of course requires that the ambi-
ent category A can be refined to be a strict 2-category (which happens in
our case, with objects/morphisms/2-morphisms being symmetric monoidal
categories/symmetric monoidal functors/symmetric monoidal natural trans-
formations).

This motivates the following definition:

Definition 17. An internal category in a strict 2-category A consists of
objects C0, C1, morphisms s, t, c of A as in definition 10 and a 2-morphism α
as in diagram (16). It is required that the diagrams (11) are commutative.

The 2-morphism α is subject to a coherence condition. In order to specify
this, it will be convenient to write α in the form

c(c× 1) α +3c(1× c)

We note that the domain and codomain of the associator α are both mor-
phisms from C1×C0 C1×C0 C1 to C1 obtained from the composition morphism
c by the two possible ways of bracketing the three inputs. We find this aspect
more transparent if we write (-1 ◦ -2) ◦ -3 instead of c(c× 1) and -1 ◦ (-2 ◦ -3)
instead of c(1× c). With this notation, we have

(-1 ◦ -2) ◦ -3
α

=⇒ -1 ◦ (-2 ◦ -3)

14



The associator α is required to satisfy the well-known Pentagon identity
which is the commutativity of the following diagram of 2-morphisms

((-1 ◦ -2) ◦ -3) ◦ -4
α◦1 +3

α

��

(-1 ◦ (-2 ◦ -3)) ◦ -4

α

��
(-1 ◦ -2) ◦ (-3 ◦ -4)

α
!)JJJJJJJJJ

JJJJJJJJJ
-1 ◦ ((-2 ◦ -3) ◦ -4)

1◦αu} ttttttttt

ttttttttt

-1 ◦ (-2 ◦ (-3 ◦ -4))

Here each vertex is a morphism from C1 ×C0 C1 ×C0 C1 ×C0 C1 to C1.

Next we define functors between categories internal to a 2-category by
weakening Definition 13.

Definition 18. (Functors between internal categories). Let C, D be
internal categories in a strict 2-category A. Then a functor f : C → D is a
triple f = (f0, f1, f2), where f0 : C0 → D0, f1 : C1 → D1 are morphisms, and
f2 is an invertible 2-morphism

C1 ×C0 C1

f1×f1

��

cC // C1

f1

��
D1 ×D0 D1

f2

∼=

6>tttttttttt

tttttttttt

cD
// D1

As in Definition 13 we require that the diagrams (14) commute. The 2-morphism
f2 is subject to a compatibility condition expressed by the commutativity of
the following diagram of 2-morphisms:

(f1(-1) ◦ f1(-2)) ◦ f1(-3)

f2◦1
��

αD +3 f1(-1) ◦ (f1(-2) ◦ f1(-3))

1◦f2

��
f1(-1 ◦ -2) ◦ f1(-3)

f2

��

f1(-1) ◦ f1(-2 ◦ -3)

f2

��
f1((-1 ◦ -2) ◦ -3) αC

+3 f1(-1 ◦ (-2 ◦ -3))

Here the vertices are morphisms from C1 ×C0 C1 ×C0 C1 to D1.
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3.2 The Euclidean bordism category d-EB

Now we are ready to define d-RB, the category of d-dimensional Riemannian
bordisms and the subcategory d-EB of d-dimensional Euclidean bordisms.
Both are categories internal to SymCat, the strict 2-category of symmetric
monoidal categories. Before giving the formal definition, let us make some
remarks that hopefully motivate the definition below. In the usual gluing
process of d-dimensional bordisms, the two glued bordisms intersect in a
closed (d − 1)-dimensional manifold Y , the object of the bordism category
which is the source (resp. target) of the bordisms to be glued. For producing
a Riemannian structure on the glued bordism (actually, even for producing a
smooth structure on it), it is better if the intersection is an open d-manifold
on which the Riemannian structures are required to match. This suggests to
refine the objects of the bordism category d-RB to be pairs (Y, Y c), where Y
is an open Riemannian d-manifold and Y c ⊂ Y (the core of Y ) is a closed
(d − 1)-dimensional submanifold of Y . We think of Y as a Riemannian
neighborhood or a Riemannian thickening of the (d − 1)-dimensional core
manifold Y c (this core manifold is the only datum usually considered). We
will assume that the complement Y r Y c is a disjoint union of the form
Y rY c = Y +qY −, such that Y c is in the closure of Y + as well as Y −. This
decomposition will allow us to distinguish domain and range of a bordism.
This is customarily controlled by comparing the given orientation of the
closed manifold Y c with the orientation induced by thinking of it as a part
of the boundary of an oriented bordism Σ. Our notion makes it unnecessary
to furnish our manifolds with orientations.

Our main goal here is to define the d-dimensional Euclidean bordism
category d-EB. It seems best to define first the Riemannian bordism category
d-RB and then d-EB as the variation where we insist that all Riemannian
metrics are flat. The simple reason is that we want to provide pictures and
it’s harder to draw interesting pictures of flat surfaces (e.g., the flat torus
doesn’t embed in R3).

Definition 19. The d-dimensional Euclidean bordism category d-RB is the
category internal to the strict 2-category SymCat of symmetric monoidal cat-
egories defined as follows. The internal category d-EB is obtained completely
analogously by using Euclidean structures (= flat Riemannian metrics) in-
stead of Riemannian metrics throughout.
The object category d-RB0. The objects of the symmetric monoidal cat-
egory d-RB0 are pairs (Y, Y c), where Y is d-dimensional Euclidean manifold
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(without boundary, but usually non-compact) and Y c ⊂ Y is a closed piece-
wise smooth submanifold of dimension d − 1, which we call the core of Y .
These pairs come equipped with a decomposition Y rY c = Y +qY −, where
Y ± ⊂ Y are disjoint open subsets whose closures contain Y c and whose union
is Y rY c. This extra datum is suppressed in the notation. Below is a picture
of an object of 2-RB0.

Y −
Y +

Y c

Figure 1: An object of 2-RB0

A morphism from Y = (Y, Y c) to Y ′ = (Y ′, (Y ′)c) is the germ of an
isometry f : V → V ′, where V ⊂ Y , V ′ ⊂ Y ′ are open neighborhoods of Y c

resp. (Y ′)c; these maps are required to send Y c to (Y ′)c and V ±
def
= V ∩Y ± to

(V ′)±
def
= V ′ ∩ (Y ′)±. As usual for germs, two such maps represent the same

germ if they agree on some smaller open neighborhood of Y c. Disjoint union
gives d-RB0 the structure of a symmetric monoidal category.
The morphism category d-RB1 is defined as follows. An object of d-RB1

consists of a pair Y0 = (Y0, Y
c

0 , Y
+

0 , Y
−

0 ), Y1 = (Y1, Y
c

1 , Y
+

1 , Y
−

1 ) of objects
of d-RB0 (the source resp. target) and a Euclidean bordism from Y0 to Y1,
which is a triple (Σ, i0, i1) consisting of a Euclidean d-manifold Σ (without
boundary) and isometric embeddings

i0 : W0 −→ Σ and i1 : W1 −→ Σ

with disjoint images. Here Wj is an open neighborhood of Y c
j ⊂ Yj. We

require that the core bordism Σc def
= Σ r

(
i0(W+

0 ) ∪ i1(W−
1 )
)

is compact,
where W±

j = Wj ∩ Y ±j
Below is a picture of a Riemannian bordism; we usually draw the domain

of the bordism to the right of its range, since we want to read compositions
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i0(W+
0 )i0(W−0 )

i0(Y c0 )

Σ
i1(W+

1 )i1(W−1 )

i1(Y c1 )

︸ ︷︷ ︸
Σc

Figure 2: A Riemannian bordism (object of 2-RB1)

of bordisms, like compositions of maps, from right to left. Roughly speaking,
a bordism between objects Y0 and Y1 of d-RB0 is just an ordinary bordism
Σc from Y c

0 to Y c
1 equipped with a Riemannian metric, thickened up a little

bit at its boundary to make it possible to glue two of them.
A morphism from a bordism Σ to a bordism Σ′ is a germ of a triple of

isometries

F : X → X ′ f0 : V0 → V ′0 f1 : V1 → V ′1 .

Here X (resp. V0 resp. V1) is an open neighborhood of Σc ⊂ Σ (resp. Y c
0 ⊂

W0 ∩ i−1
0 (X) resp. Y c

1 ⊂ W1 ∩ i−1
1 (X)) and similarly for X ′, V ′0 , V ′1 . We

require the conditions for fj to be a morphism from Yj to Y ′j in d-RB0,
namely fj(Y

c
j ) = (Y ′j )

c and fj(V
±
j ) = (V ′j )

±. In addition, we require that
these isometrie are compatible in the sense that the diagram

V1
i1 //

f1

��

X

F

��

V0
i0oo

f0

��
V ′1 i′1

// X ′ V ′0i′0

oo

is commutative. Two such triples (F, f0, f1) and (G, g0, g1) represent the
same germ if there there are smaller open neighborhoods X ′′ of Σc ⊂ X and
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V ′′j of Yj ⊂ Vj ∩ i−1
j (X ′′) such that F and G agree on X ′′, and fj and gj agree

on V ′′j for j = 0, 1.
Source, target and composition functors. There are obvious forgetful
functors s, t : d-RB1 → d-RB0 which send a bordism Σ from Y0 to Y1 to Y0

resp. Y1. These functors are compatible with taking disjoint unions and hence
they are symmetric monoidal functors, i.e., morphisms in SymCat.

There is also a composition functor

c : d-RB1 ×d-RB0 d-RB1 −→ d-RB1

given by gluing bordisms. Let us describe this carefully, since there is a
subtlety involved here due to the need to adjust the size of the Riemannian
neighborhood along which we glue. Let Y0, Y1, Y2 be objects of d-RB0, and
let Σ, Σ′ be bordisms from Y0 to Y1 resp. from Y1 to Y2. These data involve
in particular isometric embeddings

i1 : W1 −→ Σ i′1 : W ′
1 −→ Σ′,

whereW1,W
′
1 are open neighborhoods of Y c

1 ⊂ Y1. We setW ′′
1

def
= W1∩W ′

1 and
note that our conditions guarantee that i1 (resp. i′1) restricts to an isometric

embedding of (W ′′
1 )+ def

= W ′′
1 ∩ Y +

1 to Σ (resp. Σ′) (we note that this is not
necessarily true when restricting to W ′′

1 ). We use these isometries to glue Σ
and Σ′ along W ′′

1 to obtain Σ′′ defined as follows:

Σ′′
def
=
(
Σ′ r i′1((W ′

1)+ r (W ′′
1 )+)

)
∪W ′′1

(
Σ r i1(W−

1 r (W ′′
1 )−)

)
The isometric embeddings i0 : W0 → Σ and i2 : W2 → Σ′ induce isometric
embeddings W0 → Σ′′, W2 → Σ′′ satisfying our conditions. This makes Σ′′ a
bordism from Y0 to Y2.

As explained above (see Equation (16)), the composition functor c is not
strictly associative, but there is a natural transformation α as in diagram
(16) which satisfies the pentagon identity.

We note that the categories d-RB0 and d-RB1 are both groupoids (i.e., all
morphisms are invertible).

Definition 20. The category TV of (complete locally convex) topological
vector spaces internal to SymCat (the category of symmetric monoidal cate-
gories) is defined as follows.
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the object category TV0 is the category whose objects are complete lo-
cally convex topological vector spaces over C and whose morphisms
are continuous linear maps. The completed projective tensor product
gives TV0 the structure of a symmetric monoidal category.

the morphism category TV1 is the symmetric monoidal category whose
objects are continuous linear maps V0 → V1 and whose morphisms are
commutative squares. It is a symmetric monoidal category via the
projective tensor product.

There are obvious source, target, and composition functors

s : TV1 −→ TV0 t : TV1 −→ TV0 c : TV1 ×TV0 TV1 −→ TV1

which make TV an internal category in SymCat. This is a strict internal
category in the sense that associativity holds on the nose (and not just up
to natural transformations).

Now we are ready for a preliminary first definition of a d-dimensional Eu-
clidean field theory, which will be modified by adding a smoothness condition
in the next section.

Definition 21. (Preliminary!) A d-dimensional Euclidean field theory over
a smooth manifold X is a functor

E : d-EB(X) −→ TV

of categories internal to the strict 2-category of symmetric monoidal cate-
gories.

3.3 Euclidean field theories

The only feature missing from the above definition is the requirement that E
should be smooth. Heuristically, this means that the vector space E(Y ) as-
sociated to an object Y of the bordism category as well as the operator E(Σ)
associated to a bordism Σ should depend smoothly on Y resp. Σ. To make
this precise, we replace the categories d-EB, TV by family categories d-EBfam,
TVfam whose objects and morphisms are smooth families (i.e., smooth bun-
dles over some parametrizing manifold S) of the objects/morphisms of the
original categories. Let us illustrate this for the category TV.
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Definition 22. The internal category TVfam consists of categories TVfam0 ,
TVfam1 and functors s, t, c, where

the object category TVfam0 has as objects smooth vector bundles V → S
over arbitrary smooth manifolds S whose fibers are complete locally
convex topological vector spaces. A morphism from V0 → S0 to V1 →
S1 is a smooth vector bundle map

V
bf //

��

W

��
S

f // T

the morphism category TVfam1 has as objects vector bundle maps

V0

��@
@@

@@
@@

g // V1

��~~
~~

~~
~

S

Moreover, a morphism from g : V0 → V1 to h : W0 → W1 is a pair of
vector bundle maps (f̂0 : V0 → W0, f̂1 : V1 → W1) covering the same
map f : S → T on the base such that the obvious square commutes.

We note that there are functors from the categories TVfam0 and TVfam1 to the
category Man of smooth manifolds which send a vector bundle V → S (resp.
a vector bundle map g : V0 → V1 of vector bundles over S) to the base space
S. These functors are symmetric monoidal functors as well as Grothendieck
fibrations in the sense explained below (see Definitions 26 and 27). Hence
TVfam0 and TVfam1 are objects in the strict 2-category SymCat/Man of sym-
metric monoidal categories fibered over Man (see Definition 27). Moreover,
the functors s, t, c described above are morphisms in SymCat/Man thus mak-
ing TVfam a category internal to SymCat/Man.

An excellent reference for fibrations of categories is [Vi], but we briefly
recall the definition for the convenience of the reader who is not familiar with
this language. Before giving the formal definition, it might be useful to look
again at the example of the functor

p : TVfam0 −→ Man (23)
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which sends a vector bundle its base space. We note that if W → T is
a smooth vector bundle, and f : S → T is a smooth map, then there is a
pull-back vector bundle f ∗W → S, and a tautological vector bundle map
φ : V = f ∗W → W which maps to f via the functor p. The vector bundle
morphism φ has a universal property called cartesian, which more generally
can be defined for any morphism φ : V → W of a category V equipped with
a functor p : V → S to another category S. In the following diagrams, an
arrow going from an object V of V to an object S of S, written as V 7→ S,
will mean that p(V ) = S. Furthermore, the commutativity of the diagram

V_

��

φ //W_

��
S

f // T

(24)

will mean that p(φ) = f .

Definition 25. Let V be a category over S. An arrow φ : V → W of V is
cartesian if for any arrow ψ : U → W in V and any arrow g : p(U)→ p(V ) in
S with p(φ) ◦ g = p(ψ), there exists a unique arrow θ : U → V with p(θ) = g
and φ ◦ θ = ψ, as in the commutative diagram

U_

��

θ ''O
OO ψ

''
V_

��

φ
//W_

��
R

g ''OOOOOO h

''
S

f
// T

If φ : V → W is cartesian, we say that the diagram (24) is a cartesian square.

In our example of the forgetful functor TVfam0 → Man, the usual pullback
of vector bundles provides us with many cartesian squares. More precisely,
the functor p is a Grothendieck fibration which is defined as follows.

Definition 26. A functor p : V→ S is a fibration or Grothendieck fibration if
pull-backs exist: for every object W ∈ V and every arrow f : S → T = p(W )
in S, there is a cartesian square

V_

��

φ //W_

��
S

f // T
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A fibered category over S is a category V together with a functor p : V→ S
which is a fibration. If pV : V → S and pW : W → S are fibered categories
over S, then a morphism of fibered categories F : V→ W is a base preserving
functor (pV ◦ F = pW) that sends cartesian arrows to cartesian arrows.

There is also a notion of base-preserving natural transformation between
two morphisms from V to W. These form the 2-morphisms of a strict
2-category whose objects are categories fibered over S and whose morphisms
are defined above. We will use the notation Cat/S for this 2-category of
categories fibered over S.

We observe that the categories TVfam0 , TVfam1 are objects in the 2-category
Cat/Man of categories fibered over Man and the functors s, t, c are morphisms.
In other words, TVfam is a category internal to Cat/Man (since c is strictly
associative, it is even internal to Cat/Man viewed as a category).

So far we have ignored the symmetric monoidal structures on these cat-
egories. We note that TVfam0 has a symmetric monoidal structure which on
objects V → S, W → T of TVfam0 is given by the external projective tensor
product V ⊗W → S × T , and similarly for TVfam1 . We note that the forget-
ful functor p : TVfamj → Man for j = 0, 1 is a symmetric monoidal fibration
defined as follows.

Definition 27. For V, S ∈ SymCat, a functor p : V → S is a symmetric
monoidal fibration if

1. p is a strict symmetric monoidal functor;

2. p is a fibration;

3. the tensor product of cartesian arrows in V is cartesian.

We write SymCat/S for the strict 2-category of symmetric monoidal categories
fibered over S.

Similar to the passage from TV (a category internal to SymCat) to its
family version TVfam (category internal to SymCat/Man) we can go from the
Euclidean bordism category d-EB (internal to SymCat) to its family version
d-EBfam (internal to SymCat/Man). A precise description of the latter cat-
egory is our next goal. Furthermore, we would like to describe this internal
category in a way that will make it easy to construct the ‘super version’ in
the following section. So far, we’ve introduced Euclidean structures as Rie-
mannian structures which are flat. This in not a good point of view for trying

23



to work out the super analog, since it is easier to generalize the notion of
Euclidean structure to super manifolds than the notion of Riemannian struc-
tures (see Remark ??). The reason is that there is the following alternative
description of Euclidean structures.

Definition 28. Let Ed be the d-dimensional euclidean space, and let Isom(Ed)
be the isometry group of Ed (the Euclidean group, which is the semi-direct
product of the translation group Rd and the orthogonal group O(d)). A Eu-
clidean structure on a d-manifold Y is a maximal atlas consisting of charts
which are diffeomorphisms

Y ⊃ Ui
ϕi
∼=
// Vi ⊂ Ed

between open subsets of Y and open subsets of Ed such that the Ui’s cover
Y and for all i, j the transition function

Ed ⊃ ϕi(Ui ∩ Uj)
ϕj◦ϕ−1

i // ϕj(Ui ∩ Uj) ⊂ Ed

is given by the restriction of an element of the Euclidean group Isom(Ed).

It is clear that such an atlas determines a flat Riemannian metric on Y
by transporting the standard metric on Ed to Ui via the diffeomorphism ϕi.
Conversely, a flat Riemannian metric can be used to manufacture such an
atlas.

The following definition generalizes this point of view on Euclidean man-
ifold to families.

Definition 29. A family of d-dimensional Euclidean manifolds is a smooth
map p : Y → S together with a maximal atlas consisting of charts which are
diffeomorphisms ϕi between open subsets of Y and open subsets of S × Ed

making the following diagram commutative:

Y ⊃ Ui
ϕi
∼=

//

p
##G

GGGGGGGG Vi ⊂ S × Ed

p1

yysssssssssss

S

We require that the open sets Ui cover Y and that for all i, j the transition
function

S × Ed ⊃ ϕi(Ui ∩ Uj)
ϕj◦ϕ−1

i // ϕj(Ui ∩ Uj) ⊂ S × Ed
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is of the form (s, v) 7→ (s, g(s)v), where g : p(Ui∩Uj)→ Isom(Ed) is a smooth
map. We note that the conditions imply in particular that p is a submersion.

If Y → S and Y ′ → S ′ are two families of Euclidean manifolds, a mor-
phism between them is a pair of maps (f, f̂) making the following diagram
commutative:

Y

��

bf // Y ′
��

S
f // S ′

We require that f̂ restricted to each fiber is injective and that it preserves
the fiberwise euclidean structure in the sense that locally (by using charts)

f̂ is of the form (s, v) 7→ (s, g(s)v) for some smooth map g to Isom(Ed).

Definition 30. An object of d-EBfam0 is a triple (S, Y, Y c), where S is a
smooth manifold, Y → S is a family of d-dimensional Euclidean manifolds,
and Y c ⊂ Y is a codimension one submanifold such that the restriction of
p to Y c is a proper submersion. We note that the properness assumption is
a family version of our old assumption that Y c is compact, since it reduces
to that assumption for S = pt. Also part of the data, but suppressed in the
notation is the decomposition of Y r Y c as the disjoint union of two open
subsets Y ±, both of which contain Y c in their closure.

A morphism from (S, Y, Y c) to (S ′, Y ′, (Y ′)c) is the germ of a fiberwise

isometry (f, f̂) from V → S to V ′ → S ′ where V ⊂ Y (resp. V ′ ⊂ Y ′ are
open neighborhoods of Y c ⊂ Y (resp. (Y ′)c ⊂ Y ′. These maps are required

to send Y c to (Y ′)c and V ±
def
= V ∩ Y ± to (V ′)±

def
= V ′ ∩ (Y ′)±. As usual for

germs, two such maps represent the same germ if they agree on some smaller
neighborhood of Y c.

The categories d-EBfamj , j = 0, 1 have a symmetric monoidal structure
given by the (external) disjoint union of bundles (if E → S and F → T are

bundles, the external disjoint union is the bundle Eq̂F → S×T whose fiber
over (s, t) ∈ S×T is the disjoint union EsqFt of the fibers Es, Ft). Then the
forgetful functors d-EBfamj → Man are symmetric monoidal fibrations, which

makes d-EBfamj objects of SymCat/Man. The functors s, t, c are morphisms
and the associator is a 2-morphism in this 2-category. In other words, the
family bordism category d-EBfam is a category internal to SymCat/Man.
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Definition 31. A Euclidean field theory of dimension d is a functor

E : d-RBfam −→ TVfam

of internal categories over SymCat/Man, the strict 2-category of symmetric
monoidal categories fibered over the category of manifolds. If X is a smooth
manifold, a Euclidean field theory of dimension d over X is a functor

E : d-RBfam(X) −→ TVfam

of internal categories over SymCat/Man. Here d-EBfam(X) is the generaliza-
tion of d-EBfam(X) obtained by adding to the Euclidean structure a map to
X as part of the data. More precisely, d-EBfam0 (X) is the category of triples
(S, Y, Y c), where Y → S is a family of Euclidean d-manifolds equipped with
a smooth map Y → X. Similarly, the bordisms Σ → S which form the
objects of d-EBfam1 (X) come now equipped with a smooth map Σ→ X.

Other variants can be obtained by furnishing the manifolds in question
with orientations or spin-structures. More generally, we could work with
manifolds with B-structures for some fiber bundle B → BO. A more strik-
ing variation would be to replace TVfam be another internal category in
SymCat/Man.

4 Supersymmetric Euclidean field theories

In this section we will define supersymmetric Euclidean field theories by re-
placing manifolds by super manifolds and Euclidean structures by super Eu-
clidean structures in the definitions of the previous two sections. It is possible
to define supersymmetric quantum field theories along these lines, but super
Riemannian structures are harder to define (see Remark ??) and for rea-
sons explained in the introduction, our primary interest is in Euclidean field
theories.

We will first give a rapid introduction to super manifolds (more details
can be found e.g. in [DM]) and explain what we mean by a super Euclidean
structure in Definition ??. Then we define the super versions of our categories
TVfam and d-EBfam. The idea is to look at families parametrized by super
manifolds. From a categorical point of view, these categories will be inter-
nal to the strict 2-category SymCat/SMan of symmetric monoidal categories
fibered over the category SMan of super manifolds. We end this section with
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our definition of a supersymmetric EFT as a functor between these internal
categories (Definition 41).

4.1 Super manifolds

The monoidal category of Z/2-graded vector spaces and their tensor product
can be made into a symmetric monoidal category in two different ways. It
is usual to speak of the symmetric monoidal category of Z/2-graded vector
spaces if the braiding isomorphism V ⊗W → W⊗V is given by v⊗w 7→ w⊗v.
Equipped with the signed braiding isomorphism V ⊗W → W ⊗ V given by
v⊗w 7→ (−1)deg(v) deg(w)w⊗v, it is referred to as the symmetric monoidal
category of super vector spaces. A monoidal object in this category is called
a super algebra, which amounts to a Z/2-graded algebra. A commutative
monoidal object is called a commutative super algebra. Explicitly, it is a
Z/2-graded algebra such that for any homogeneous elements a, b we have
a · b = (−1)deg(a) deg(b)b · a.

Definition 32. A super manifold M of dimension p|q is a ringed space
(Mred,OM) consisting of a topological space Mred (called the reduced mani-
fold) and a sheaf OM (called the structure sheaf) of commutative super alge-
bras locally isomorphic to (Rp,C∞(Rp) ⊗ Λ[θ1, . . . , θq]). Here C∞(Rp) is the
sheaf of smooth complex valued functions on Rp, and Λ[θ1, . . . , θq]) is the
exterior algebra generated by elements θ1, . . . , θq (which is equipped with a
Z/2-grading by declaring the elements θi to be odd). It is more customary
to require that OM is a sheaf of real algebras; in this paper we will always
be dealing with a structure sheaf of complex algebras (these are called cs-
manifolds in [DM]). Abusing language, the global sections of OM are called
functions on M ; we will write C∞(M) for the algebra of functions on M .

As explained by Deligne-Morgan in [DM, §2.1], the quotient sheaf OM/J ,
where J is the ideal generated by odd elements, can be interpreted as a
sheaf of smooth functions on Mred, giving it a smooth structure. Morphisms
between super manifolds are defined to be morphisms of ringed spaces.

Let N be a smooth p-manifold and E →M be a smooth complex vector

bundle of dimension q. Then ΠE
def
= (N,C∞(ΛE∗)) is an example of a super

manifold of dimension p|q. Here C∞(ΛE∗)) is the sheaf of sections of the
exterior algebra bundle ΛE∗ =

⊕q
i=0 Λi(E∗) generated by E∗, the bundle

dual to E; the Π in ΠE stands for parity reversal. We note that every super
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manifold is isomorphic to a super manifold constructed in this way (but not
every morphism ΠE → ΠE ′ is induced by a vector bundle homomorphism
E → E ′). We will be in particular interested in the super manifold ΠTNC
associated to the complexified tangent bundle of N . We note that

C∞(ΠTNC) = C∞(N,ΛTN∗C) = Ω∗(N ; C), (33)

where Ω∗(N ; C) is the algebra of complex valued differential forms on N .

4.2 Super Euclidean spaces and manifolds

Next we define the super analogues of Euclidean spaces, Euclidean groups
and Euclidean manifolds. Our definitions of super Euclidean space and super
Euclidean group are modeled on the definitions of super Minkowski space and
super Poincaré group in [DF, §1.1], [Fr, Lecture 3]. In the non-super case, it
is usual to first define the d-dimensional Euclidean space Ed as the manifold
Rd equipped with its standard Riemannian metric, and then to define the
Euclidean group as the isometry group Isom(Ed) of Ed. Alternatively, in
the spirit of Felix Klein’s Erlangen Program, one could first define Isom(Ed)
as the semi-direct product of the translation- and rotation group, and then
define as we did in Definition 28 a Euclidean structure on a d-manifold as
a maximal atlas whose transition functions belong to Isom(Ed). We follow
Klein’s path in the super case.

To define super Euclidean space, we need the following data:

V a real vector space with an inner product
∆ a complex spinor representation of Spin(V )
Γ: ∆∗ ⊗∆∗ → VC a Spin(V )-equivariant, non-degenerate sym-

metric pairing

Here VC is the complexification of V . A complex representation of Spin(V ) ⊂
C`(V )ev is a spinor representation if it extends to a module over C`(V )ev,
the even part of the complex Clifford algebra generated by V .

The super manifold V ×Π∆∗ is the super Euclidean space. We note that
this is the super manifold associated to the trivial complex vector bundle
V × ∆∗ → V , and hence the algebra of functions on this super manifold is
the exterior algebra (over C∞(V )) generated by the ∆-valued functions on
V , which we can interpret as spinors on V .
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The pairing Γ allows us to define a multiplication on the super manifold
V × Π∆∗ by

(V × Π∆∗)× (V × Π∆∗) −→ V × Π∆∗ (34)

(v1, w1), (v2, w2) 7→ (v1 + v2 + Γ(w1 ⊗ w2), w1 + w2), (35)

which gives V × Π∆∗ the structure of a super Lie group (see [DM, §2.10]).
Here we describe the multiplication map in terms of the functor of points
approach explained e.g. in [DM, SS2.8-2.9]: for any super manifold S the set
Xs of S-points in another super manifold X consists of all morphisms S → X.
For example, an S-point of the super manifold V × Π∆∗ amounts to a pair
(v, w) with v ∈ C∞(S)ev ⊗ VC, w ∈ C∞(S)odd ⊗ ∆∗ and v̄red = vred (where
vred ∈ C∞(Sred)⊗VC is the restriction of v to the reduced manifold, and v̄red
is its complex conjugate). A morphism of super manifolds X → Y induces
maps XS → YS between the S-points of X and Y , which are functorial in S.
Conversely, any collection of maps XS → YS which is functorial in S comes
from a morphism X → Y (by Yoneda’s lemma).

We note that the spinor group Spin(V ) acts on the super manifold
V × Π∆∗ by means of the double covering Spin(V ) → SO(V ) on V and
the spinor representation on ∆∗. The assumption that the pairing Γ is
Spin(V )-equivariant guarantees that this action is compatible with the (su-
per) group structure we just defined. We define the super Euclidean group to
be the semi-direct product (V ×Π∆∗)oSpin(V ). By construction, this super
group acts on the super manifold V ×Π∆∗ (the translation subgroup V ×Π∆∗

acts by group multiplication on itself, and Spin(V ) acts as explained above).
Up to isomorphism, the inner product space V and hence the associated

Euclidean group is determined by the dimension of V . By contrast, the
isomorphism class of the data (V,∆,Γ) is in general not determined by the
pair (d, δ) = (dimR V, dimC ∆). Still, we will use the notation

Ed|δ def
= V × Π∆∗ super Euclidean space (36)

Isom(Ed|δ)
def
= (V × Π∆∗) o Spin(V ) super Euclidean group (37)

If necessary, δ could be interpreted as the isomorphism class of the data
(∆,Γ). In this paper, we are only interested in the cases (d, δ) = (0, 1), (1, 1), (1, 2).
As we will see, there is no ambiguity in the first two cases, and for (1, 2) we
explicitly choose one the two isomorphism classes. We note that C`ev0 =
C`ev1 = C and hence there is only one module ∆ (up to isomorphism) of
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any given dimension δ. For d = dimV = 0, the homomorphism Γ is neces-
sarily trivial; for d = 1, δ = 1, the homomorphism Γ is determined (up to
isomorphism of the pair (∆,Γ)) by the requirement that Γ is non-degenerate.

For d = 2, δ = 1, there are two non-isomorphic modules ∆ over C`ev2 =
C ⊕ C. To describe them explicitly as representations of Spin(V ), V = R2

we identify Spin(V ) with S1 by the isomorphism ϕ : S1 → Spin(V ) which
is characterized by requiring that the image of ϕ(z) under the projection
map Spin(V ) → SO(V ) acts on V = R2 = C by multiplication by z2. The
irreducible complex representations of S1 are parametrized by the integers.
For k ∈ Z let us write Ck for the complex numbers equipped with an S1-action
such that z ∈ S1 acts by multiplication by zk. Then up to isomorphism
∆∗ = Ck for k = ±1 and the S1-equivariant homomorphism

∆∗ ⊗∆∗ = C2k
Γ−→ VC = C2 ⊕ C−2

is given by the inclusion map into the first summand (for k = 1) respectively
second summand (for k = −1). For reasons that will become clear later, we
fix our choice of (∆,Γ) to be given by k = −1.

Now we can extend our definition of Euclidean structures to super mani-
folds. We will be brief, since this is a straightforward extension of Definitions
28 and 29.

Definition 38. Suppose a triple (V,∆,Γ) as above is fixed with d = dimR V ,
δ = dimC ∆. A (super) Euclidean structure on a super manifold Y of dimen-
sion d|δ is a maximal atlas of Y such that all transition functions belong to
the super Euclidean group Isom(Ed|δ). Similarly, extending Definition 29 to
super manifolds we define families of d|δ-dimensional Euclidean manifolds
Y → S over some super manifold S. These are in particular submersions
whose fibers are super manifolds of dimension d|δ equipped with euclidean
structures.

4.3 The superfamily categories TVsfam and d|δ-EBsfam

To define the category TVsfam we need to replace smooth vector bundles over
manifolds by smooth vector bundles over supermanifolds. We recall that a
smooth vector bundle can be characterized in terms of its sheaf of sections.
This description generalizes immediately to the following definition of vector
bundles (with possibly infinite dimensional fibers) over a super manifold S.
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Definition 39. Let V be a locally convex topological vector space equipped
with a Z/2-grading and let S be a super manifold of dimension p|q. A vector
bundle over S with fiber V is a sheaf V of topological OS-supermodules which
is locally isomorphic to OS ⊗ V (projective tensor product of locally convex
vector spaces). We note that OS is a sheaf of Frechet algebras since for every
open subset U ⊂ Sred the algebra OS has a unique Frechet algebra structure
[GS].

Replacing vector bundles over manifolds by vector bundles over super
manifolds, we can now mimic Definition 22 to define the internal category
TVsfam. The object category TVsfam0 is the category of vector bundles over
super manifolds, and the morphism category TVsfam is the category of vector
bundle maps between vector bundles over the same supermanifold. There
are obvious forgetful functors from these categories to SMan which make
TVsfam0 and TVsfam1 categories fibered over SMan. Moreover, the graded ten-
sor product makes them symmetric monoidal categories fibered over SMan.
The source-, target-, and composition functor are compatible with these
structures and hence TVsfam is a category internal to the strict 2-category
SymCat/SMan of symmetric monoidal categories fibered over SMan.

Definition 40. The Euclidean bordism category d|δ-EBsfam is a category in-
ternal to SymCat/SMan. It is a generalization of the category d-EBfam (Def-
inition 30) obtained by replacing families of d-dimensional Euclidean mani-
folds parametrized by families of d|δ-dimensional Euclidean super manifolds
(see Definition 38). More generally, if X is a smooth manifold, d|δ-EBsfam0 (X)
is built from families of Euclidean super manifolds equipped with smooth
maps to X.

Definition 41. Let Ed|δ be a fixed super Euclidean space. A supersymmetric
Euclidean field theory (supersymmetric EFT) of dimension d|δ is a functor

d|δ-EBsfam −→ TVsfam

of categories internal to the strict 2-category SymCat/SMan of symmetric
monoidal categories over SMan. If X is a smooth manifold, a supersymmetric
Euclidean field theory over X is a functor

d|δ-EBsfam(X) −→ TVsfam

of categories internal to SymCat/SMan.
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5 Twisted field theories

In this section we will define field theories of non-zero degree, or – in physics
lingo – non-zero central charge. More generally, we will define twisted field
theories over a manifold X. As explained in the introduction we would like to
think of field theories over X as representing cohomology classes for certain
generalized cohomology theories. Sometimes it is twisted cohomology classes
that play an important role, e.g., the Thom class of a vector bundle that
is not orientable for the cohomology theory in question. We believe that
the twisted field theories defined below (see Definition 47) represent twisted
cohomology classes, which motivates our terminology. We will outline a proof
of this for d|δ = 0|1 and 1|1.

We will describe Euclidean field theories of degree n, or more generally,
twisted Euclidean field theories as natural transformations between functors
(see Definition 47). More precisely, these are functors between internal cat-
egories; their domain is our internal bordism category d|1-EBsfam. So our
first task is to describe what is meant by a natural transformation between
such functors. Then we will construct the range category and outline the
construction of the relevant functors which will allow us to define Euclidean
field theories of degree n. We end the section by relating Euclidean field
theories of degree zero to field theories as defined in section ?? and by com-
paring our definition with Segal’s definition of conformal field theories with
non-trivial central charge.

5.1 Natural transformations between internal functors

Definition 42. (Natural transformations) Let A be a category with pull-
backs and let C, D be categories internal to A. If f , g are two internal functors
C→ D, a natural transformation n from f to g is a morphism n ∈ A(C0,D1),
C0,D1 ∈ A making the following diagrams commutative:

C0

g0

~~}}
}}

}}
}}
n

��

f0

  A
AA

AA
AA

A

D0 D1
too s // D0

C1

nt×f1

��

g1×ns // D1 ×D0 D1

cD

��
D1 ×D0 D1

cD // D1

(43)

We note that the commutativity of the first diagram is needed in order
to obtain the arrows gt× f1, g1 × ns in the second diagram. If the ambient
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category A is the category of sets, then f, g : C→ D are just functors between
small categories and n amounts to a natural transformation from the functor
f to the functor g; the first diagram expresses the fact that for an object
a ∈ C0 the associated morphisms na ∈ D1 has domain f0(a) and range g0(a).
The second diagram expresses the fact that for every morphism h : a→ b the
diagram

f0(a)
na //

f1(h)

��

g0(a)

g1(h)

��
f0(b)

nb // g0(b)

is commutative.
Now let us assume that A is a strict 2-category, that C, D are internal

categories in A and that f, g : C → D are internal functors (as defined in
Definitions 17 and 18). As we have done in those definitions with internal
category and functor, we will weaken the notion of natural transformation
by requiring the second diagram only to be commutative up to a specified
2-morphism.

Definition 44. Let f, g : C→ D be internal functors between internal cate-
gories in a strict 2-category A. A natural transformation from f = (f0, f1, f2)
to g = (g0, g1, g2) is a pair n = (n0, n1), where n0 : C0 → D1 is a morphism,
and n1 is a 2-morphism:

C1

g1×n0s

��

n0t×f1 // D1 ×D0 D1

cD

��
D1 ×D0 D1

cD //

n1

3;ooooooooooo

ooooooooooo
D1

(45)

It is required that the first diagram of Definition 42 is commutative, and that
the morphisms f2, g2, n1 and αD of D1 satisfy a coherence condition expressed
as the commutativity of an octagon of morphisms in D1.

5.2 Twisted Euclidean field theories

Next we define the internal category that we will need as range category.

Definition 46. We define the internal category TA of topological algebras as
follows.
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TA0 Is the category whose objects are topological algebras. A topological al-
gebra is a monoid in the symmetric monoidal category TV of topological
vector spaces (equipped with the projective tensor product); i.e., an ob-
ject A ∈ TV together with an associative multiplication A ⊗ A → A.
Morphisms are continuous algebra isomorphisms.

TA1 is the category of bimodules over topological algebras. A bimodule is
a triple (A1, B,A0), where A0, A1 are topological algebras, and B is
an A1-A0-bimodule (i.e., an object B ∈ TV with a morphism A1 ⊗
B⊗A0 → B satisfying the usual conditions required for a module over
an algebra). A morphism from (A1, B,A0) to (A′1, B

′, A′0) is a triple
(f1, g, f0) consisting of isomorphisms f0 : A0 → A′0, f1 : A1 → A′1 of
topological algebras and a morphism f : B → B′ of topological vector
spaces which is compatible with the left action of A1 and the right
action of A0 (A1 acts on B′ via the algebra homomorphism A0 → A′0,
and similarly for A0).

There are obvious source and target functors s, t : TA1 → TA0 given by
s(A1, B,A0) = A0, t(A1, B,A0) = A1, and a composition functor

c : TA1 ×TA0 TA1 −→ TA1 (A2, B,A1), (A1, B
′, A0) 7→ (A2, B ⊗A1 B

′, A0)

The two categories TV0, TV1, the functors s, t, c and the usual associator for
tensor products define a category TA of topological algebras internal to the
strict 2-category Cat. We can do better by noting that the tensor product
(in the category TV) makes TV0, TV1 symmetric monoidal categories and
that the functors s, t, c are symmetric monoidal functors. This gives TA the
structure of a category internal to the strict 2-category SymCat of symmetric
monoidal categories.

More generally, we have a family version TAsfam of this internal category,
where TAsfam0 is the category of smooth bundles of topological algebras over
super manifolds, and TAsfam1 is a category whose objects are quadruples
(S,A1, B,A0), where A1, A2 are smooth bundles of topological algebras over
the super manifold S, and B is a bundle of A1-A0-bimodules over S. The
obvious forgetful functors TAsfami → SMan for i = 0, 1 make these categories
Grothendieck fibered over the category SMan of super manifolds; the external
tensor product gives them the structure of symmetric monoidal categories
Grothendieck fibered over SMan.
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Definition 47. Let X be a smooth manifold and let

T : d|δ-EBsfam(X)→ TA

be a functor from the category d|δ-EBsfam of (families of) Euclidean super
manifolds of dimension d|δ with maps to X (see Definition 40) to the category
TAsfam of families of topological algebras. A T -twisted Euclidean field theory
of dimension d|δ is a natural transformation

d|δ-EBsfam(X)

T 0

$$

T

::TAsfamE

��

where T 0 is the constant functor that maps every object Y of d|δ-EBsfam(X)0

to the algebra C ∈ TAsfam0 (which is the unit in the symmetric monoidal
category of TA0). It maps every object Σ of d|δ-EBsfam(X)1 to (A1, B,A0) ∈
TAsfam1 , where A1 = A0 is the algebra C and B is also C, but regarded
now as C-C-bimodule (this is the monoidal unit in TAsfam1 ). The functors
T 0
i : d|δ-EBsfami (X)→ TAi send every morphism to the identity morphism of

the monoidal unit of TAi.

Let us unravel this definition in order to relate our notion of twisted field
theory to Segal’s definition of a weakly conformal field theory based on a
modular functor E [?, Definition 5.2]. We note that the twisting functor

T = (T0, T1) : d|δ-EBsfam(X) −→ TAsfam

associates to a closed manifold Y of dimension d − 1|q (equipped with a
neighborhood of dimension d|δ with Euclidean structure and a map to X)
a topological algebra T0(Y ). To a Euclidean bordism Σ of dimension d|δ
from Y0 to Y1 the functor T associates the T0(Y1)-T0(Y0)-bimodule T1(Σ). Of
course, T0 and T1 are functors defined on families of these objects, but it is
better to ignore that aspect for the time being.

To understand the mathematical content of the natural transformation
E = (E0, E1), we use Definition 44 and Diagram (45) in the case

C = d|δ-EBsfam(X) D = TVsfam f = T 0 g = T n = E

We see that a natural transformation E is a pair (E0, E1), where
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• E0 : d|δ-EBsfam(X)0 → TV1 is a functor; in particular, E0 associates
to each closed manifold Y of dimension d − 1|q an object E0(Y ) of
TV1, i.e., E0(Y ) is a bimodule. The commutative triangle (43) implies
that E0(Y ) is a left module over tE0(Y ) = g0(Y ) = T0(Y ) and a right
module over sE0(Y ) = f0(Y ) = T 0

0 (Y ) = C; in other words, E0(Y ) is
just a left T0(Y )-module.

• According to diagram (45) E1 is a natural transformation, i.e., for every
bordism Σ from Y0 to Y1 (this is an object of C1) we have a morphism
E1(Σ) in D1 whose domain (resp. range) is the image of Σ ∈ C1 under
the functors

C1
g1×n1s//D1 ×D0 D1

cD //D1 resp. C1
n1t×f1//D1 ×D0 D1

cD //D1 .

More explicitly, E1(Σ) is a map of left T0(Y1)-modules

E1(Σ) : T1(Σ)⊗T0(Y0) E0(Y0) −→ E0(Y1)⊗T 0
0 (Y1) T

0
1 (Σ) ∼= E0(Y1).

We note that if the twisting functor T is the constant functor T0, then E0(Y )
is just a topological vector space, and E1(Σ) is a continuous linear map
E0(Y0)→ E0(Y1). It turns out that the commutative octagon in the definition
of a natural transformation (Definition 44) amounts to the condition

E1(Σ′ ◦ Σ) = E1(Σ′) ◦ E1(Σ)

if Σ is a bordism from Y0 to Y1, and Σ′ is a bordism from Y1 to Y2. This in
turn implies that the diagram (??) is commutative (on the nose). For future
reference, we summarize these consideration as follows.

Lemma 48. The category of T0-twisted Euclidean field theories over X is
isomorphic to the category of d|δ-dimensional Euclidean field theory over X
as in Definition 41.

5.3 Field theories of degree n

A Euclidean field theory of dimension d|δ and degree n ∈ Z over a smooth
manifold X is a Tn-twisted EFT, where

T n : d|δ-EBsfam(X) −→ TAsfam
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is a specific functor. There is more general functor

TW : d|δ-EBsfam(X) −→ TAsfam

associated to any Z/2-graded vector bundle W → X equipped with a metric
and a metric preserving connection. The functor T n is defined to be TW ,
where W is the trivial even (resp. odd) vector bundle of dimension |n| if
n ≥ 0 (resp. n ≤ 0).

Suppressing the family aspect for now, we need to associate to each closed
Euclidean super manifold Y of dimension d− 1|q (as usual equipped with a
Euclidean neighborhood of dimension d|δ) a topological algebra TW0 (Y ), and
to a super Euclidean bordism Σ from Y0 to Y1 a bimodule TW1 (Σ) equipped
with a right action of TW0 (Y0) and a left action of TW0 (Y0). In particular if Σ
is closed, then TW1 (Σ) is just a Z/2-graded complex vector space. In fact, it
is a graded complex line, namely the Pfaffian line of the skew-adjoint Dirac
operator

/D: L2(Σred;S+ ⊗ f ∗TX) −→ L2(Σred;S− ⊗ f ∗TX)

on the reduced manifold Σred. Here S = S+ ⊕ S− is the spinor bundle on
Σred (w.r.t. the metric and spin structure induced by the super Euclidean
structure on Σ), and f : Σred → X is the restriction to Σred ⊂ Σ of the map
Σ→ X that is part of Σ as object of d|δ-EBsfam(X)1 (but that we suppress
in the notation). We recall that the Pfaffian line is defined as the top exterior
power of the finite dimensional vector space given by the kernel of the Dirac
operator.

If Σ is not closed, but say a bordism from the empty set to the object
Y = (Y, Y c, Y +, Y −) ∈ d|δ-EBsfam(X), then the kernel of /D is no longer
finite dimensional. Rather, the restriction of harmonic spinors on Σ to Y
gives a Lagrangian subspace LΣ ⊂ H(Y ) of the space of germs of harmonic
spinors defined in some neighborhood of Y c. Here a Lagrangian subspace is
a maximal isotropic subspace with respect to the symmetric bilinear form b
on H(Y ) which occurs as the boundary term in the equation

〈/DΦ,Ψ〉 − 〈/DΨ,Φ〉 = b(Φ|Y ,Ψ|Y ).

We define TW0 (Y ) to be the Clifford algebra generated by the vector space
H(Y ) equipped with the symmetric bilinear form b; the Frechet topology on
H(Y ) induces a topology on this Clifford algebra. It is well-known that a
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Lagrangian subspace of the vector space generating a Clifford algebra deter-
mines a Fock space module over this algebra (characterized by the property
that it contains a one-dimensional subspace whose annihilator is the given
Lagrangian subspace). If Σ has no closed components, we define TW1 (Σ) to
be the Fock module for the Clifford algebra TW0 (Y ) determined by the La-
grangian subspace of boundary values of harmonic spinors. If Σ does have
closed components, we apply the above construction to what is left if we
ignore all closed components, and then tensor with the Pfaffian lines deter-
mined by the closed components. It can be shown that this construction
is compatible with gluing of bordisms, and hence leads to a functor from
d|1-EB(X) to TA.

This construction can be generalized to families of super Euclidean q|1-ma-
nifolds Σ → S by considering the fiberwise Dirac operator for the reduced
bundle Σred → Sred. For example, if Σ → S is a family of closed manifolds,
this gives a graded line bundle over Sred. The problem is that this bundle
does not extend in a canonical way to a line bundle over S ⊃ Sred, and
hence we do not obtain a functor from q|1-EBsfam(X) to TAsfam this way.
The solution is to work with differential operators on the super manifolds
themselves rather than the Dirac operator on their reduced manifolds.

5.4 Differential operators on super Euclidean space

Our goal is to construct for Euclidean super manifolds Σ of dimension d|1
natural differential operators

/D: C∞(Σ) −→ C∞(Σ; BerΣ);

or more generally,

/DW : C∞(Σ;W ) −→ C∞(Σ; BerΣ⊗W )

for any vector bundle with connection W → Σ. Here BerΣ is the Berezinian
line bundle over Σ whose sections can be integrated over Σ (provided Σred

comes equipped with an orientation), see [DM, Proposition 3.10.5]; Deligne-
Morgan use the notation Ber(Ω1

Σ) for BerΣ. If Σ is a manifold of dimension
d|0 (i.e., an ordinary manifold), then BerΣ is just the top exterior power of
the cotangent bundle. In general, if x1, . . . , xd, θ1, . . . , θq are local coordinates
(xi’s even, θi’s odd), their differentials dx1, . . . , dθq ∈ Ω1

Σ lead to a local
section [dx1, . . . , dxd, dθ1, . . . , dθq] of BerΣ.
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To define /D on a Euclidean super manifold of dimension d|1, it suffices to
define it on the super Euclidean space Ed|1 and to show that it is invariant
under the action of the super Euclidean group. So supposeW is vector bundle
with connection over Ed|1. Then we define the W -twisted Dirac operator

/DW : C∞(Ed|1; BerEd|1 ⊗W ) −→ C∞(Ed|1;W )

for d = 0, 1, 2 as follows:

/DW ([dθ]f) = ∇∂θf

/DW ([dx, dθ]f) = ∇∂θ−iθ∂xf

/DW ([dz, dz̄, dθ]f) = ∇∂z∇∂θ+θ∂z̄f

6 Evaluating EFT’s on closed manifolds

In this section we discuss what type of information can be obtained from an
d|δ-dimensional QFT E by evaluating it on (families of) closed Euclidean
super manifolds of dimension d|δ. So let

E : d|δ-EBsfam(X) −→ TVsfam

be a Euclidean field theory of dimension d|δ over a smooth manifold X.
Let p : Σ → S be a family of Euclidean super manifolds of dimension d|δ.
Assuming that p is proper, we can interpret p : Σ→ S as a family of bordisms
parametrized by S from the empty set to itself, or, more formally, as an object
of the category d|δ-EBsfam1 . If f : Σ→ X is a smooth map, then

(S Σ
f //poo X ) (49)

is an object of the category d|δ-EBsfam(X)1 with source and target

s(S Σ
f //poo X ) = t(S Σ

f //poo X ) = (S ∅ //oo X ).

Applying the functor

E1 : d|δ-EBsfam(X)1 → TVsfam1

we obtain an object of TVsfam1 , i.e., a vector bundle morphism V0 → V1 of
vector bundles over S. The vector bundles Vi are determined by the source
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and target of the bordism Σ. Since V0 = V1 = E0(S ∅ //oo X ) is the
trivial 1-dimensional vectorbundle over S, we can regard

E1(S Σ
f //poo X ) ∈ C∞(S)

as a function on the super manifold S.
The following result is a very useful observation.

Proposition 50. Let G be a super Lie group which acts by symmetries on the
object (49) (i.e., G acts on Σ and S making the maps p and f equivariant –
with the trivial action on X – and the action preserves the fiberwise Euclidean

structure on Σ). Then the function E1(S Σ
f //poo X ) is G-invariant with

respect to the induced action on C∞(S).

The reader might wonder what being G-invariant means if G is a super
group. We provide an explanation with our proof of the statement. From

a more abstract point of view we can regard the triples (S Σ
f //poo X )

as objects of a stack over the Grothendieck site Man of smooth manifolds.
Evaluating a Euclidean field theory E on such an objects gives a smooth
function on this stack.

Proof. Let µ : G×S → S be the action map, and p2 : G×S → S be the pro-
jection map. The G-action on Σ provides a bundle isomorphism preserving
the fiberwise Euclidean structure between the pullback bundles

p∗2Σ→ G× S and µ∗Σ→ G× S

Moreover, the G-equivariance assumption on f guarantees that this isomor-

phism is compatible with the natural maps p∗2Σ
fbp2−→ X and µ∗Σ

fbµ−→ X. In
other words, the objects

(G× S p∗2Σ
fbp2 //oo X ) and (G× S µ∗Σ

fbµ //oo X )

are isomorphic in d|δ-EBsfam(X)1 via an isomorphism which is the identity on
the parameter space G× S. Compatibility of the functor E1 with pullbacks
then implies that the pullback functions p∗2h and µ∗h agree for

h = E1(S Σ
f //poo X ) ∈ C∞(S).

If G is a discrete group, the condition p∗2h = µ∗h is obviously equivalent
to the invariance of h ∈ C∞(S). For a super Lie group G, we adopt this
condition as the definition of G-invariance.
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Now we want to extend the above discussion to twisted field theories over
X. So let E be a d|δ-dimensional T -twisted Euclidean field theory over X
(see Definition 47). In the paragraphs following that definition we discussed
what this means in more concrete terms: if Σ is a bordism from Y0 to Y1,
then we have the following data:

• for i = 0, 1 we have a topological algebra T0(Yi) and a left T0(Yi)-module
E1(Yi);

• We have a T0(Y1)-T0(Y0)-bimodule T1(Σ) and a E1(Y1)-linear map

E2(Σ) : T1(Σ)⊗T0(Y0) E1(Y0) −→ E1(Y1)

In particular, if Y0 = Y1 = ∅, then T0(Y0) = T0(Y1) = C (as algebras),
E1(Y0) = E1(Y1) = C (as modules), and E2(Σ) can be identified with an
element of the dual space T1(Σ)∗. In the above discussion, we’ve suppressed
the family aspect, as well as the map from the bordism Σ to the manifold
X. Putting this back in, we see that given a family of closed bordisms

(S Σ
f //poo X ) ∈ d|δ-EBsfam(X)1 (51)

we obtain

1. a vector bundle T1(S Σ
f //poo X ) over S;

2. a section of the dual bundle

E2(S Σ
f //poo X ) ∈ C∞(S;T ∗1 (S Σ

f //poo X )).

Now let us assume that as in Proposition 50 a super Lie group G acts by

symmetries on (S Σ
f //poo X ). This implies that T1(S Σ

f //poo X ) is a
G-equivariant vector bundle over S, and generalizing Proposition 50 we have
the following result.

Proposition 52. Let G be a super Lie group which acts by symmetries on

(S Σ
f //poo X ). Then E1(S Σ

f //poo X ) is a G-equivariant section of

the vector bundle T ∗1 (S Σ
f //poo X ) over S.

Interpreting the triples (S Σ
f //poo X ) as objects of a stack over Man,

the twist functor T determines a vector bundle over this stack (given by

(S Σ
f //poo X ) 7→ T ∗1 (S Σ

f //poo X )). The T -twisted field theory E

determines a section of this bundle (given by Q1(S Σ
f //poo X )).
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7 EFT’s of low dimensions

7.1 EFT’s of dimension d = 0

Let us consider a 0-dimensional Euclidean field theory E over a smooth
manifold X in the sense of our Preliminary Definition 21; i.e., E is a functor

E : 0-EB(X) −→ TV

between categories internal to the strict 2-category of symmetric monoidal
categories. These are very big words for the very simple situation we are
looking at here:

• 0-EB(X)0 is the category whose objects are −1-dimensional manifolds
with maps to X; it has only one object, the empty set, and only
the identity morphism. Since E0 : 0-EB(X)0 −→ TV0 is a symmet-
ric monoidal functor, it must send ∅ to a vector space isomorphic to C,
the monoidal unit in TV0.

• An object of 0-EB(X)1 is a 0-manifold Σ with a map f : Σ → X.
Thinking of Σ as a bordism from ∅ to ∅, the functor E1 : 0-EB(X)1 →
TV1 associates to (Σ, f) a continuous linear map

E1(Σ, f) ∈ Hom(E0(∅), E0(∅)) = C;

(more formally, E1(Σ, f) is an object of TV1, i.e., a continuous linear
map; source and target are determined by s(E1(Σ, f)) = E0(s(Σ, f)) =
E0(∅) and t(E1(Σ, f)) = E0(t(Σ, f)) = E0(∅)). Thinking of (Σ, f) as
an unordered collection x1, . . . , xk of points of X, the fact that E1 is
monoidal implies

E1(x1, . . . , xk) = E1(x1) · · · · · E1(xk) ∈ C.

In particular, the functor E1 is determined by the function X → C
x 7→ E1(x).

We conclude that a 0-dimensional Euclidean field theory E over X (in the
sense of the preliminary Definition 31)determines a function X → C (not
necessarily smooth or even continuous) and conversely, such a function de-
termines a 0-dimensional EFT E over X (up to the choice of E0(∅), i.e., up
to natural transformations).
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Now let us discuss 0-dimensional EFT’s over X in the sense of the proper
Definition 31; i.e., as a functor

E : 0-EBfam(X) −→ TVfam.

We recall that 0-EBfam(X) and TVfam are family versions of the internal cat-
egories discussed above; in particular, the monoidal categories 0-EBfam(X)i,
TVfami , i = 0, 1 are fibered over the category of manifolds. Still, there is no
interesting information in the monoidal functor E0; it sends (S ← ∅ → X) ∈
0-EBfam(X)0 to a trivial 1-dimensional vector bundle over the parameter
space S.

As in the non-family situation discussed above, the interesting informa-
tion is contained in the symmetric monoidal functor

E1 : 0-EBfam(X)1 −→ TVfam1 .

If (S Σ
f //poo X ) is an object of 0-EBfam(X)1 (i.e., p is a finite sheeted

cover, and f is a smooth map), then E1(S Σ
f //poo X ) is strictly speaking

an endomorphism of the trivial line bundle E0(S ∅ //oo X ), but it can be
identified with a smooth function on X. The requirement that E1 is a functor
of symmetric monoidal categories over Man means that E1 is compatible with
pullbacks of covers, and that disjoint union of covers corresponds to products
of the associated functions.

We claim that E1 is determined by the function

E1(X X
1 //1oo X ) ∈ C∞(X; C).

To see this, consider the function

h = E1(S Σ
f //poo X ) ∈ C∞(S; C)

associated to a general object of 0-EBfam(X)1. If the cover p is one-sheeted,

the object (S Σ
f //poo X ) can be obtained as a pull-back of the object

(X X
1 //1oo X ), and hence the function h is determined for one-sheeted

coverings. In general, the restriction of Σ → S to sufficiently small subsets
S ′ ⊂ S gives a trivial covering, i.e., a disjoint union of one-sheeted coverings
and hence the restriction of h to S ′ is determined by the monoidal property.
Let us summarize the result of these considerations:
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Lemma 53. The above construction provides an equivalence between the
category of 0-dimensional EFT’s over X and the discrete category whose
objects are the smooth functions on X.

We recall that a category is called discrete if the only morphisms are
identity morphisms. The discussion above illustrates in the simplest exam-
ple that extending functors to the family category is a way to ensure their
smoothness. Still, the result of all this work is disappointing for a topolo-
gist, since any two smooth functions are concordant, and hence there is only
one concordance class of 0-dimensional field theories over X. Fortunately,
supersymmetry comes to the rescue in the sense that there are interesting
concordance classes of supersymmetric 0-dimensional EFT’s over X as we
will see now.

So let E be a 0|1-dimensional EFT over X (the dimension 0|1 makes it
clear that E is supersymmetric). According to Definition 41 E is a functor

E : 0|1-EBsfam(X) −→ TVsfam

of internal categories. We recall that 0|1-EBsfam(X)i, TVsfami , i = 0, 1
are symmetric monoidal categories fibered over the category SMan of su-
per manifolds. Again, E0 is uninteresting since the empty set is the only
super manifold of dimension −1|0. The functor E0 sends (S ← ∅ → X) ∈
0|1-EBsfam(X)0 to a trivial 1-dimensional vector bundle over the super man-
ifold S.

Now let us consider an object

(S Σ
f //poo X ) ∈ 0|1-EBsfam(X)1;

here p is a bundle of super manifolds with fibers of dimension 0|1 equipped
with super Euclidean structures along the fibers. It image under the functor
E1 : 0|1-EBsfam(X)1 → TVsfam1 is an endomorphism of a 1-dimensional trivial
line bundle over the super manifold S which again can be interpreted as a
function on S. Now let us consider a particular object, namely(

map(R0|1, X) map(R0|1, X)× R0|1 ev //p1oo X
)
∈ 0|1-EBsfam(X)1. (54)

Here map(R0|1, X) is the super manifold of maps from R0|1 to X, p1 is the
projection onto the first factor, and ev is the evaluation map. In general,
the internal hom map(Y,X) between two super manifolds X, Y is only a
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generalized super manifold (i.e, a functor SManop → Set), but as discussed in
??, for Y = R0|1, it is represented by the super manifold ΠTXC. The image
of this object under E1 is a function on map(R0|1, X) that we denote by

ω ∈ C∞(map(R0|1, X)) = C∞(ΠTXC) = Ω∗(X; C).

We recall from ?? that the functions on ΠTXC can be identified with complex
valued differential forms on X.

Lemma 55. ω is a closed, even form.

In a nutshell, this follows since the isometry group G of the super Eu-
clidean space R0|1 acts on the object (54); i.e., the evaluation map isG-equivariant
w.r.t. the induced action on map(R0|1, X) and the trivial action on X. This

implies that ω is in the fixed point set of the inducedG-action on C∞(map(R0|1, X)).
A calculation identifies the fixed point set with the subspace of closed even
forms. This argument is useful in other situations, and we give a general
form of it in the next subsection. In subsection ?? we’ll return to provide
more details for the argument above, as well as discussing the more general
situation of EFT’s of dimension 0|1 with non-trivial degree.

The object (54) is the universal object of 0|1-EBsfam(X)1 in the same

sense that the object (X X
1 //1oo X ) was universal for 0-EBfam(X): every

object is locally (after restricting to sufficiently small subsets of S) isomorphic
to a disjoint union of pull-backs of this universal object. This implies that
the functor E1 is determined by the differential form ω, the value of E1 on
the universal object, which provides the crucial step for the following result.

Proposition 56. The above construction provides an equivalence between the
category of 0|1-dimensional EFT’s over X and the discrete category whose
objects are elements of Ωev

cl (X,C) (closed even forms with values in C).

Stoke’s Theorem implies that two closed n-forms are concordant if and
only if they differ by an exact form. Hence we obtain the following corollary.

Corollary 57. There is a bijection between concordance classes of 0|1-dimen-
sional EFT’s over X of degree n and the elements of the cohomology group
Hn(X,C).

Now let us return to the discussion of 0-dimensional field theories of the
previous section. First we will provide a proof of Lemma 55. Let G be the
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Euclidean super group of isometries of the Euclidean super space R0|1. By
construction, G is the semi-direct product R0|1 o Z/2, where R0|1 acts on
itself by translations, and Z/2 (= Spin(V ) for the trivial vector space V )
acts on R0|1 by θ 7→ −θ. The super group G acts by symmetries on(

map(R0|1, X) map(R0|1, X)× R0|1 ev //p1oo X
)
.

If E is a 0-EFT over X, Proposition 50 implies that E1 maps the above
object to a G-invariant function ω on map(R0|1, X). As before we identify

functions on map(R0|1, X) with differential forms on X. A calculation shows
that the Z/2-factor of G acts on Ω∗(X; C) by multiplication by −1 on the
odd forms and trivially on the even forms. This implies that ω is an even
form.

To understand the R0|1-action on map(R0|1, X), we note that a R0|1-action
on any super manifold Y can be identified with an odd vector field on Y with
square zero. This is the odd analogue of the statement that an R-action on
an ordinary manifold is determined by a vector field. A calculation shows
that the odd vector field (= odd derivation of functions) corresponding to
the R0|1-action on map(R0|1, X) is the usual exterior differential d acting on

Ω∗(X; C). In particular the R0|1-invariant functions on map(R0|1, X) are the
closed differential forms on X. This proves Lemma 55.

Next we will discuss 0|1-dimensional EFT’s over X of degree n. Apply-
ing Proposition 52 to the situation at hand, we see that if E is a 0|1-EFT
of degree n over X, then we obtain a G-equivariant section ω of the dual

of the G-equivariant vector bundle T n1 (S Σ
poo ) over S = map(R0|1, X) (we

note that by construction of the degree n twist functor T n, this vector bun-
dle doesn’t depend on the map Σ → X). By the compatibility of T n1 with
pullbacks, the vector bundle is the pullback of T n1 ( pt R0|1oo ) (a line bun-
dle over the point pt), which in turn can be identified with the n-tensor
power of the line T 1

1 ( pt R0|1oo ). Choosing an identification of the latter

line with C allows us to identify sections of T n1 (S Σ
poo ) again with dif-

ferential forms on X. A calculation shows that Z/2 ⊂ G acts on the line
T 1

1 ( pt R0|1oo ) by multiplication by −1. This implies that G-equivariant

sections of T n1 (S Σ
poo ) correspond to the closed even forms (for n even)

resp. closed odd forms (for n odd). This implies the analog of Proposition
56 for field theories of degree n. In particular we obtain the following gener-
alization of Corollary 57.
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Corollary 58. There is a bijection between concordance classes of 0|1-dimen-
sional EFT’s over X of degree n and the elements of the even cohomology
Hev(X,C) (the sum of the cohomology groups Hk(X; C) for k even) if n is
even. For n odd, there is a bijection with the odd cohomology Hodd(X,C)
(the sum of the cohomology groups Hk(X; C) for k odd).

Remark 59. It is possible to consider topological field theories of dimen-
sion 0|1 instead of Euclidean field theories by not requiring any geometric
structure on the bordisms. Our discussion above goes through with one
change: we need to replace the isometry group of R0|1 by the larger dif-
feomorphism group Diff(R0|1). A calculation shows that the elements of
C∞(map(R0|1, X)) = Ω∗(X; C) that are Diff(R0|1)-invariant are the closed
differential forms of degree zero. Hence a topological field theory of dimen-
sion 0|1 over X amounts to a closed 0-form on X. More generally, topologi-
cal field theories over X of dimension 0|1 and degree n correspond to closed
n-forms on X.

7.2 EFT’s of dimension d = 1

7.3 EFT’s of dimension d = 2

In this subsection we will discuss Euclidean field theories of dimension 2
and 2|1. The most basic invariant of a 2-dimensional EFT E is its partition
function which is defined by evaluating E on closed Euclidean manifolds as
described in general in section 6. We note that by the Gauss-Bonnet Theorem
the only closed surface that admits a Euclidean structure (i.e., a flat metric)
is the torus. In fact, the moduli space of flat tori can be parametrized
by the product R+ × R2

+ of the positive real line R+ and the upper half
plane R2

+ (consisting of τ ∈ R2 = C with positive imaginary part). This
parametrization is given by associating to (`, τ) ∈ R+ × R2

+ the flat torus

T`,τ := C/`(Zτ + Z1).

While every flat surface is isometric to some T`,τ , the map which sends (`, τ)
to the isometry class of T`,τ is not injective. A torus T`,τ is isometric to T`′,τ ′
if and only if (`, τ) and (`′, τ ′) are in the same orbit of the SL2(Z)-action on
R+ × R2

+ given by (
a b
c d

)
(`, τ) =

(
`|cτ + d|, aτ + b

cτ + d

)
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If we forget about the first factor, the quotient of R2
+ modulo SL2(Z) has

the well-known interpretation as the moduli space of conformal structures
on tori. Similarly, the above statement means that the moduli space of
Euclidean structures on tori can be identified with the quotient of R+ × R2

+

modulo SL2(Z). As in the conformal situation, the product R+×R2
+ itself can

be interpreted as the moduli space of Euclidean tori furnished with a basis
for their integral first homology. Then the SL2(Z)-action above corresponds
to changing the basis.

Definition 60. Let E be a 2-dimensional Euclidean field theory. Then its
partition function

ZE : R+ × R2
+ −→ C

is defined by ZE(`, τ) = E1(T`,τ ), i.e., by evaluating the field theory on the
closed Euclidean 2-manifold T`,τ (regarded as a bordism from ∅ to itself).

What can we say about the partition function ZE? First of all, it is a
smooth function. To see this, we note that the tori T`,τ fit together to a
smooth bundle

p : Σ→ R+ × R2
+ (61)

with a fiberwise Euclidean structure, such that the fiber over (`, τ) ∈ R+×R2
+

is the Euclidean torus T`,τ . As discussed in the previous section, evaluating E
on this smooth family results in a smooth function on the parameter space
R+ × R2

+. Compatibility of E with pullbacks guarantees that this is the
function ZE.

Secondly, the partition function ZE is invariant under the SL2(Z)-action.
This follows by noting that the group SL2(Z) acts on the universal bun-
dle (61) by bundle automorphisms which preserve the fiberwise Euclidean
structure such that the projection map is equivariant. For ( a bc d ) ∈ SL2(Z)
the associated bundle automorphism maps the fiber T`,τ isometrically to the
fiber T`′,τ ′ for `′ = `|cτ + d|, τ ′ = aτ+b

cτ+d
via the map induced by the isometry

C→ C given by multiplication with the unit complex number |cτ+d|
cτ+d

(to check

this claim, it is easier to show that multiplication by cτ+d
|cτ+d| maps the lattice

`′(Zτ ′+ Z1) to the lattice `(Zτ + Z1)). Then Proposition 50 implies that the
partition function ZE is SL2(Z)-equivariant.

Now we want to comment on how close ZE comes to being a modular
function, i.e., a function on R2

+ which is SL2(Z)-invariant, holomorphic and
holomorphic at infinity. Since the conformal class of the torus T`,τ is inde-
pendent of the scaling factor `, the partition function of a conformal field
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theory E independent of `. It follows that ZE(1, τ) is a SL2(Z)-invariant
function on the upper half plane. If E is not conformal, there is no reason
to expect ZE(`, τ) to be independent of `, and hence no reason for ZE(1, τ)
to be invariant under the SL2(Z)-action. Similarly, even if E is a conformal
theory, one shouldn’t expect ZE(1, τ) to be a holomorphic function, unless E
is holomorphic in the sense that the operators associated to any bordism Σ
depend holomorphically on the parameters determining the conformal struc-
ture on Σ. A precise definition of a holomorphic theory can be given in the
terminology of this paper by working with families of conformal bordisms
parametrized by complex analytic spaces instead of smooth manifolds.

Again, like in the cases d = 0 and d = 1 we’ve discussed before, Eu-
clidean field theories of dimension 2 are disappointing from the point of view
of a topologist who tries to find cocycles for elliptic cohomology. Again,
supersymmetry comes to the rescue as shown by the following result.

Theorem 62. Let Ê be a Euclidean field theory of dimension 2|1 and degree
n. Then its partition function Z bE : R+ × R2

+ → C is independent of ` ∈ R+,
and as function of τ it is a weak integral modular form of weight −n

2
.

The partition function of a 2|1-dimensional EFT Ê is defined as the par-
tition function of an associated non-supersymmetric EFT E of dimension 2.
More precisely, E is a spin EFT of dimension d, i.e., a functor

E : d-EBfamspin −→ TVfamsuper

Here TVfamsuper is the internal category defined analogously to TVfam, but using
super vector bundles instead of vector bundles. The spin bordism category
d-EBfamspin is defined exactly like d-EBfam but the (fiberwise) Euclidean struc-
ture is augmented by the addition of a spin structure. This can be expressed
by replacing the isometry group Isom(Ed) = Rd oSO(Rd) by its spin double
cover Rd o Spin(Rd). This additional structure allows us to define a functor
S of internal categories

S : d-EBfamspin −→ d|δ-EBfam,

where d|δ-EBfam is the restriction of d|δ-EBsfam to families paramatrized by
ordinary manifolds, which makes d|δ-EBfam a category internal to SymCat/Man.
The construction of S of course requires that it makes sense to talk about
Euclidean structures on super manifolds of dimension d|δ as defined in sec-
tion 4.2, i.e., that there is a complex spinor representation ∆ of Spin(d) of
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dimension δ, and a Spin(d)-equivariant, non-degenerate symmetric pairing
Γ: ∆∗⊗∆∗ → VC. If Σ is a spin d-manifold with Euclidean structure, it has
a principal Spin(d)-bundle Spin(Σ) → Σ determined by the spin structure.
We obtain an associated complex spinor bundle Spin(Σ) ×Spin(d) ∆∗ → Σ
and the corresponding cs-manifold

S(Σ) := Π
(
Spin(Σ)×Spin(d) ∆∗ → Σ

)
(63)

of dimension d|δ, the superfication of Σ. The Euclidean charts of Σ (with
transition functions in Rd oSpin(d)) lead to super Euclidean charts of S(Σ)
(with transition functions still in RdoSpin(d)). In other words, the Euclidean
structure on Σ induces a super Euclidean structure on S(Σ). Applying this
construction to all (families of) Euclidean spin manifolds defines functors S.

To construct E, we note that the category of manifolds Man is a subcat-
egory of the category of super manifolds SMan. This allows us to restrict
any category C fibered over SMan to a category C|Man fibered over Man. In
particular, if C = (C0,C1) is a category internal to the 2-category Cat/SMan
of categories fibered over SMan, applying this to C0, C1 we obtain a category
C|Man = ((C0)|Man, (C1)|Man) internal to the 2-category Cat/Man. In addition,
if C is internal to SymCat/SMan, the 2-category of symmetric monoidal cat-
egories fibered over SMan, then C|Man will be internal to SymCat/Man. If
f : C → D is an internal functor of categories internal to SymCat/SMan, it
restricts to an internal functor f|Man of categories internal to SymCat/Man.

In particular, Ê restricts to an internal functor

d|δ-EBfam
def
= d|δ-EBsfam|Man

bE|Man−→ TVsfam|Man = TVfamsuper.

Definition 64. Let E be a d-dimensional EFT. We say that E extends to a
d|δ-dimensional EFT Ê if E is equal to the composition

d-EBfamspin
S // d|δ-EBfam

bE|Man // TVfamsuper

We now begin with the outline of the proof of Theorem 62, which consists
of two quite separate parts. To explain these, we need a little bit of terminol-
ogy first. Fix a real number ` > 0 and consider for τ ∈ R2

+ the parallelogram
in R2 spanned by the vectors ` and `τ . The torus T`,τ is obtained by gluing
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the opposite sides of this parallelogram; gluing only the two non-horizontal
sides results in a cylinder C`,τ with two boundary circles of length `. Hence
we can regard C`,τ as a Euclidean bordism from the circle S1

` of length ` to
itself (here we suppress the 2-dimensional Riemannian neighborhood of S1

`

since this is simply a cartesian product of S1
` with an interval in the case at

hand).
Let E be a 2-EFT, let H := E0(S1

` ) be the locally convex topological
vector space associated to S1

` , and let

A : R2
+ −→ N (H) be defined by A(τ) = E1(C`,τ ). (65)

Here N (H) is the algebra of trace class operators (also called nuclear op-
erators) on H. We note that A is a smooth map, since the cylinders C`,τ
for ` fixed can be assembled in a smooth family of Euclidean bordisms
parametrized by R2

+, to which E1 associates a smooth family of trace class
operators.

Proposition 66. Let E be a spin EFT of dimension 2, let H = E0(S1
` )

be the associated Z/2-graded topological vector space and A : R2
+ → N (H)

the associated smooth family of trace class operators. An extension of E to a
supersymmetric EFT of dimension 2|1 determines a smooth family C : R2

+ →
N (H)odd of odd trace class operators commuting with the family A such that

∂z̄A = −C2.

Proposition 67. Let E be a spin EFT of dimension 2 and degree n which
satisfies the conclusion of the previous proposition. Then the partition func-
tion of E is a weak integral modular form of weight −n

2
.

It is Proposition 66 that we consider as our original and new contribution,
which shows in which way our geometric definition of supersymmetric field
theories determines the algebra. In our previous paper [ST] we didn’t yet
have the proper formulation of the relevant geometric structure on super
manifolds of dimension 2|1. We speculated about the existence of such a
structure in Hypothesis 3.29 of that paper, guided by the supersymmetry
cancellation arguments which prove Proposition 67. These arguments seem
to be fairly standard in the physics literature, at least on the Lie algebra
level, i.e., for infinitesimal generators of the above families A, C. An outline
can be found in our earlier survey paper [ST, Thm. 3.30].
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Sketch of the proof of Proposition 66. The family A(τ) of trace class opera-
tors was obtained by applying E to the family of cylinders C`,τ (for fixed

` ∈ R+) parametrized by R2
+. If Ê is the extension of E to a 2|1-EFT, we

will obtain the family of odd operators B(τ) by applying Ê to a family of

super cylinders Σ → R2|1
+ parametrized by the super manifold R2|1

+ . Here a
super cylinder is a Euclidean super manifold of dimension 2|1 whose reduced
manifold is a Euclidean cylinder.

So far we’ve described families Σ → S by characterizing the fiber over
every point s ∈ S. While this is intuitive, it is hardly satisfactory for ordinary
bundles. If the base space is a super manifold, it certainly won’t do, since
talking about points of a super manifold can only reveal information about
its reduced manifold. So a more global description of Σ → S is needed. It
seems best to do that first in the non-super situation in a way that generalizes
directly to the super case. We recall from Definition 40 that objects of 2-EB0

are quadruples Y = (Y, Y c, Y +, Y −), where Y c is a closed 1-manifold and Y
is a 2-dimensional Euclidean neighborhood of Y c, and Y ± are the two pieces
the complement Y rY c consists of. In particular, to consider the circle S1

` as
an object of 2-EB0 we need to be precise about the Euclidean neighborhood.
We define:

S1
` = (R2/`Z,R/`Z,R2

+/`Z,R2
−/`Z).

Here R ⊂ R2 is the x-axis, R2
± ⊂ R2 is the upper (resp. lower) half plane,

and the group `Z acts on R2 via the emdeddings `Z ⊂ R ⊂ R2 and the
translation action of R2 on itself. Below is a picture of the object S1

` .
Now we’ll describe the cylinder C`,τ as an object of 2-EB1. We recall that

an object of 2-EB1 is a pair Y0, Y1 of objects of 2-EB0 and bordism from Y0

to Y1, i.e., a triple

(W1
i1 //Σ W0

i0oo )

where Σ is a Euclidean d-manifold, Wj is a neighborhood of Y c
j ⊂ Yj for

j = 0, 1, and i0, i1 are local isometries such that certain conditions are
satisfied (see Definition 19 and picture 4). We make C`,τ precise as an object
of 2-EB1 by declaring it to be the following bordism from S1

` to itself:

C`,τ = (R2/`Z id //R2/`Z R2/`Z`τoo ),

where `τ : R2 → R2 is translation by `τ 6= 0 and id is the identity, see figure
4.

52



R2
−/`Z

0

R2
+/`Z

R/`Z

Figure 3: The object S1
` of 2-EB0

Before moving on to the case of families and super manifolds, we make
the following two simple geometric observations:

C`,τ+1 = C`,τ C`,τ ◦ C`,τ ′ ∼= C`,µ(τ,τ ′), (68)

where µ : R2 × R2 → R2 is the addition map. We remark that the objects
C`,τ+1 and C`,τ are in fact the same object, since the map `τ : R2/`Z→ R2/`Z
depends only on τ modulo Z. The bordism C`,τ ◦C`,τ ′ obtained by composing
these cylinders is not equal to, but isomorphic to the cylinder C`,τ+τ ′ as object
of 2-EB1.

Now we turn to families. Suppose that S is a manifold and ` : S → R+ ⊂
R2, τ : S → R2

+ are smooth maps. We want to think of ` and τ as sections
of the trivial bundle S ×R2 → S. Since R2 is a group, left multiplication by
a section can be interpreted as gauge transformation. Let

E = `Z\(S × R2)
p−→ S

be the bundle obtained by dividing out the free Z-action given by multipli-
cation by `. The Euclidean structure on R2 induces a fiberwise Euclidean
structure on E. Then we get an object S1

` := (S, Y, Y c, Y ±) of 2-EBfam0 by
setting Y := E, Y c := `Z\(S × R) and Y ± := `Z\(S × R2

±). Moreover, we

obtain a bordism C`,τ = (S, (W1
i1 //Σ W0

i0oo ) from S1
` to itself by setting
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`τ

000

`τ

id

Figure 4: The object C`,τ of 2-EB1

Σ = W0 = W1 = E and i1 = id. The map i0 : E → E is induced by left
multiplication by the section `τ . We note that if the parameter space S is a
point, we obtain the objects S1

` , C`,τ defined before.
Finally we come to the case of super manifolds. Let S be a supermanifold,

and let ` : S → R+ ⊂ R2|1, τ : S → R2|1
+ be smooth functions. We make use

of the fact that R2|1 is super Lie group (see ??) and imitate the construction
above by defining the bundle

E = `Z\(S × R2|1)
p−→ S.

Here some care is necessary since unlike R2, the super group R2|1 is not
commutative. We remark that it is crucial that the Z-action on S × R2|1 is
defined by left multiplication since only left multiplication leaves the super
Euclidean structure on R2|1 invariant. This guarantees that E has a fiberwise
super Euclidean structure. We define the objects

S1
` ∈ 2|1-EBsfam0 and C`,τ ∈ 2|1-EBsfam1

as before, observing that i0 is well-defined since multiplication by `τ com-
mutes with `, despite the fact that R2|1 is non-commutative. We remark that
the geometric relations (68) continue to hold in the category 2|1-EBsfam1 .

Now let us apply the functor Ê to derive algebraic consequences of these
geometric relations. Applying Ê0 : 2|1-EBsfam0 → TVsfam to S1

` gives a vector
bundle over S. Let us assume that ` : S → R+ is a constant map. Then this
vector bundle is trivial with fiber H = Ê0(S1

` : pt→R+
), due to compatibility
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with pullbacks. Applying Ê1 : 2|1-EBsfam1 → TVsfam1 to the bordism C`,τ
gives a vector bundle automorphism of S ×H which we can reinterpret as a
smooth map

Ê1(C`,τ ) : S −→ N (H)

to the space N (H) of nuclear (= trace class) operators on the locally convex

vector space H. In particular, for τ = id: R2|1
+ → R2|1

+ we obtain a smooth
function

Â := Ê1(C`,id) : R2|1
+ −→ N (H).

We observe that the morphisms in the category TVsfam1 are determined by
their images under the source and target functors s, t : TVsfam1 → TVsfam0 .
This implies that the isomorphism in the relation (68) leads to the identity

E1(C`,τ ) ◦ E1(C`,τ ′) = E1(C`,µ(τ,τ ′)).

Specializing to the case where S = R2|1
+ × R2|1

+ and τ, τ ′ are the projection
maps onto the first resp. second factor, we obtain the following identity.

Â(z1, z̄1, θ1) ◦ Â(z2, z̄2, θ2) = Â(z1 + z2, z̄1 + z̄2 + θ1θ2, θ1 + θ2) (69)

Let us write the function Â in the form Â = A + θB, where A (resp. B)
is an even (resp. odd) element of C∞(R2|1) ⊗N (H). We claim that A is in
fact the function defined earlier in (65). To see this we note that for any

τ : S → R2
+ the restriction of the bordism family C

2|1
`,τ to Sred ⊂ S agrees

with the superfication construction S applied to the family C2
`,τred

, where τred

is the restriction of τ : S → R2
+ to Sred. Compatibility of Ê with pullbacks

then implies that the restriction of Â to R2
+ = (R2|1

+ )red is equal to A.

Writing Â in this form, we now expand both sides of the relation (69) as
powers of θ1 and θ2. Let us consider only terms involving θ1θ2. On the left
hand side we obtain

θ1B(z1) ◦ θ2B(z2) = −θ1θ2B(z1) ◦B(z2),

since θ2 and B(z1) are both odd. On the right hand side the only term
involving the product θ1θ2 comes from the Taylor expansion

A(z1 + z2, z̄1 + z̄2 + θ1θ2) = A(z1 + z2, z̄1 + z̄2) +
∂A

∂z̄
(z1 + z2, z̄1 + z̄2)θ1θ2
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Comparing coefficients we conclude

∂A

∂z̄
(z1 + z2) = −B(z1) ◦B(z2).

In particular, setting z1 = z2 = z
2

and C(z) := B( z
2
) we obtain a family with

the desired properties, provided we can show that all operators of this family
commute with all operators of the family A. We will again use equation (69)
to prove this. Again expanding both sides in powers of θ1 and θ2, this time
we look for the terms only involving θ1.This leads to the identity

B(z1) ◦ A(z2) = B(z1 + z2).

Similarly, comparing the coefficients of θ2 leads to

A(z1) ◦B(z2) = B(z1 + z2),

which shows that the A-family and the B-family commute with each other.

Outline of the proof of Proposition 67. Let E be a 2-dimensional EFT. Then
its partition function ZE(`, τ) can be written as

ZE(`, τ) = E1(T
2|1
`,τ ) = strE1(C

2|1
`,τ ) = strA(`, τ).

Now using the assumption of our Proposition, we write

∂A

∂z̄
= −C2 = −1

2
[C,C]

(where [ , ] is the graded commutator) and hence :

∂

∂z̄
strA = − str(C2) = −1

2
str[C,C] = 0,

since the super trace vanishes on graded commutators. This shows that strA
is a holomorphic function on the upper half plane R2

+.
We observe that the relations (68) imply that the operatorA(τ) = E1(C`,τ )

depends only on q = e2πiτ and that τ 7→ A(τ) is a commutative semi-group
of trace class operators parametrized by the upper half-plane R2

+. This al-
lows to use the spectral theorem to decompose H into a sum of simultaneous
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(generalized) eigenspaces for these operators. Each non-zero eigenvalue λ(τ)
is then a smooth homomorphisms R2

+ → C∗ and hence can be written in the
form

λ(τ) = e2πi(aτ−bτ̄) = qaq̄b

for some a, b ∈ C. We note that A(τ + 1) = A(τ) implies λ(τ + 1) =
λ(τ) which in turn implies a − b ∈ Z. Let us denote by Ha,b ⊂ H the
generalized eigenspace corresponding to the eigenvalue function λ(τ) given
by equation (??). We note that the spaces Ha,b are finite dimensional, since
the operators A(τ) are trace class and hence compact; in particular, any
generalized eigenspace with non-zero eigenvalue is finite dimensional.

Since only the non-zero eigenspaces contribute to the super trace of A(τ),
we have

strA(τ) =
∑
a,b

str(A(τ)|Ha,b).

It is straightforward to calculate the super trace of A(τ) restricted to Ha,b;
A(τ) is an even operator and hence it maps the even (resp. odd) part of H
to itself, and we can calculate the trace of A(τ) acting on H±a,b separately.

There is a basis of H±a,b such that the matrix corresponding to A(τ) is upper
triangular with diagonal entries λa,b(τ). It follows that

str
(
A(τ)|Ha,b

)
= λa,b(τ) sdimHa,b.

We note that the argument proving the holomorphicity of strA(τ) continues
to hold if we restrict A(τ) to the subspace Ha,b (the projection map onto Ha,b

is built by functional calculus from the operators A(τ); hence any operator
that commutes with all A(τ)’s – like B(τ/2) – will also commute with the
projection operator and hence preserve the subspace Ha,b). We note that the
function λa,b(τ) is holomorphic if and only if b = 0. It follows:

sdimHa,b = 0 for b 6= 0.

In particular, the only contribution to the super trace of A(τ) comes from
the space Ha,0, which forces a to be an integer k. We conclude

strA(τ) =
∑
k∈Z

str
(
A(τ)|Hk,0

)
=
∑
k∈Z

λk,0(τ) sdimHk,0 =
∑
k∈Z

qk sdimHk,0.

The eigenspaces Hk,0 must be trivial for sufficiently negative k, otherwise
the corresponding eigenvalues qk are arbitrarily large and A(τ) cannot be of
trace-class.
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