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1. Introduction

Let C be the abelian group of topological concordance classes of knots in S3. In
this paper we provide new information about its structure. One consequence is
that there is a subgroup of infinite rank consisting entirely of knots with vanishing
Casson–Gordon invariants [CG] but whose non-triviality is detected by the von
Neumann signature invariants of [COT].

Recall that two knotted circles in S3 are topologically concordant if there is a
locally flat topological embedding of the annulus in S3 × [0, 1] whose restriction
to the boundary components gives the knots. The equivalence class of the trivial
knot is the identity for C, which is a group under connected-sum of knots, and
inverses are given by taking the mirror-image and reversing the string orientation.
A slice knot is one which is zero in this group, or, equivalently bounds a locally-flat
embedded disk in B4. All of our work is in this topological category.

In [COT] we defined a geometric filtration of C
0 ⊂ · · · ⊂ Fn.5 ⊂ Fn ⊂ · · · ⊂ F1.5 ⊂ F1 ⊂ F.5 ⊂ F0 ⊂ C

where Fh consists of all h-solvable knots for h ∈ 1
2N0. An equivalent and more

algebraic definition of these terms is reviewed in the next section. We showed that
0-solvable knots are precisely the Arf invariant zero knots so that C/F0

∼= Z2 given
by the Arf invariant and that C/F.5 is J. P. Levine’s algebraic concordance group

∗The authors were partially supported by the National Science Foundation.
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which he proved in [L] was isomorphic to Z∞ ⊕ (Z2)∞ ⊕ (Z4)∞. We also showed
that knots in F1.5 have vanishing Casson–Gordon invariants and thus F1/F1.5 has
infinite rank, as detected by Casson–Gordon invariants (the last statement goes
back to Jiang [J ]). Finally, we showed that F2/F2.5 is non-zero, in particular
an infinite set of non-slice knots with vanishing Casson–Gordon invariants was
exhibited. Here we will show that this set of classes is linearly independent.

More precisely,

Theorem. F2/F2.5 has infinite rank.

The infinite set {Ki} of non-trivial elements of F2/F2.5 that was exhibited
in [COT, Sec. 6] was obtained from a single “seedling” ribbon knot by certain
satellite constructions (which we call “genetic modifications”) using a sequence
of auxiliary knots {Ji}. Non-triviality was proven by evaluating a von Neumann
signature whose value on Ki was shown to be essentially the integral of the classical
Levine–Tristram signature function of Ji. This pleasing fact is verified in Section 5
of this paper. It is simple enough to find a set {Ji} for which the set of these real
numbers is integrally linearly independent (and we do this in Section 5 of the
present paper). If our higher-order invariants were additive under connected-sum,
then the Theorem would follow immediately. However, the higher-order nature
of our invariants (just as for those of Casson and Gordon) makes it difficult even
to formulate an additivity statement. In particular, our third-order invariants
depend on choices of “metabolizers” (or self-annihilating submodules) for the 1st

and 2nd-order Blanchfield–Seifert forms, and unfortunately, the number of such
choices is usually infinite for any connected sum of knots. To avoid the difficulties
of the obvious direct approach, we employ a slight variation which makes crucial
use of a special technical feature of the Ki (arising from the corresponding fact
for the original ribbon knot), namely that they have unique 1st and 2nd-order
metabolizers.

Only the seemingly technical problem of finding a “seedling” ribbon knot with
unique metabolizers for its higher order linking forms (of orders 1, 2, . . . , n − 1)
obstructs us from using the very same proof to show that Fn/Fn.5 has infinite
rank for each n ∈ Z+.

Remark. In very recent work [CT] two of us have shown that Fn/Fn.5 has non-
zero rank for each n ≥ 0 but the proof does not seem to adapt to show infinite
rank. The latter is still open for n > 2.

We also include in Section 5 a proof of the following theorem about genus
one slice knots (more generally about 1.5-solvable knots), that was announced in
[COT]. It should be compared and contrasted to Theorem 4 of [Gi]. In the case
of slice knots, this result first appeared as a corollary to Theorem 3.13 in the
unpublished Ph.D. thesis of D. Cooper.
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Theorem. Suppose K is a 1.5-solvable knot (for example a slice knot) whose
Alexander polynomial is not 1 and which admits a Seifert surface F of genus 1.
Then there exists a homologically essential simple closed curve, J , on F that has
self-linking number zero and such that the integral of the Levine–Tristram signature
function of J vanishes.

In the proof, we first identity the integral of the Levine–Tristram signatures of
J as the von Neumann signature, σ

(2)
Z (J), of J with respect to the homomorphism

onto Z, see Proposition 5.1. Then we use the naturality of von Neumann’s con-
tinuous dimension to identify σ

(2)
Z (J) with the von Neumann signature, σ

(2)
Γ (K),

of the original knot K with respect to a homomorphism to a certain metabelian
group Γ. Compared to the other proofs of this result, our argument gives a more
direct reason why this real number is a concordance invariant of K.

We wish to thank Andrew Ranicki and Michael Larsen for helpful contributions.

2. n-solvable knots and von Neumann ρ-invariants

We briefly review some of the definitions of [COT] which are used herein.
Let G(i) denote the i-th derived group of a group G, inductively defined by

G(0) := G and G(i+1) := [G(i), G(i)]. A group is n-solvable if G(n+1) = 1. For a
CW-complex W , we define W (n) to be the regular covering space corresponding
to the subgroup π1(W )(n). If W is an spin 4-manifold then there is an intersection
form

λn : H2(W (n)) × H2(W (n)) −→ Z[π1(W )/π1(W )(n)]

and a self-intersection form µn (see [Wa] chapter 5 and [COT] section 7). An
n-Lagrangian is a Z[π1(W )/π1(W )(n)]-submodule L ⊂ H2(W (n)) on which λn and
µn vanish and which maps (under the covering map) onto a (1/2)-rank direct sum-
mand of H2(W ; Z). An n-surface F in W is a based, immersed surface in W , which
lifts to W (n). Thus λn and µn can be computed in W by considering intersections
weighted by elements of π1(W )/π1(W )(n), and an n-Lagrangian may be conve-
niently encoded by considering a collection of n-surfaces whose lifts generate it.

Suppose K is a knot and M is the closed 3-manifold resulting from 0-framed
surgery on S3 along K.

Definition 2.1. A knot (or M) is n-solvable (n ∈ N0) if M bounds a spin 4-
manifold W , such that the inclusion map induces an isomorphism on first homology
and such that W admits two dual n-Lagrangians. This means that λn pairs the two
Lagrangians non-singularly and that their images together freely generate H2(W ).
Such a W is called an n-solution for K (or for M). Note that the exterior of a
slice disk is, for any n, an n-solution for the slice knot (and for M) simply because
the second integral homology vanishes.

A knot is (n.5)-solvable, n ∈ N0, if, in addition to the above, one of the dual
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n-Lagrangians is the image (under the covering map) of an (n + 1)-Lagrangian.
Then W is called an (n.5)-solution for K (or for M).

The set Fn (respectively F(n.5)) of concordance classes of n-solvable (respec-
tively (n.5)-solvable) knots is a subgroup of C.

More details can be found in [COT] sections 1, 7 and 8.
Suppose φ : π1(M) −→ Γ is a homomorphism. The von Neumann ρ-invariant

ρ(M,φ) ∈ R is then defined and satisfies ρ(−M,φ) = −ρ(M,φ) [ChG]. Recall
[COT, Definition 5.8 and Lemma 5.9] that whenever (M,φ) = ∂(W,ψ) for some
compact, oriented 4-manifold W , ρ(M,φ) = σ

(2)
Γ (W,ψ) − σ0(W ) where σ

(2)
Γ is

the von Neumann signature of the intersection form on H2(W ; ZΓ) and σ0 is the
ordinary signature. If Γ is a poly-torsion-free-abelian group (henceforth PTFA)
then ZΓ embeds in a skew field of fractions KΓ and σ

(2)
Γ may be viewed as a real-

valued homomorphism from L0(KΓ), so σ
(2)
Γ (W,ψ) is a function of the Witt class

of the intersection form on the free module H2(W ;KΓ).
We shall need only the following properties of ρ from [COT].
(2.2) If Γ is an n-solvable PTFA group and φ extends over some (n.5)-solution

W for M , then ρ(M,φ) = 0 [COT, Theorem 4.2]. In particular, if K is a
slice knot and φ extends over the exterior of a slice disk then ρ(M,φ) = 0
for any PTFA group Γ. The reader who is not familiar with [COT] can see
that the latter follows from the very believable fact that H2(W ; Z) = 0
implies that H2 of the Γ-cover of W is Γ-torsion, hence H2(W ;KΓ) = 0
[COT, Prop. 4.3].

(2.3) (subgroup property) If φ factors through a subgroup Γ′, then ρ(M,φ) =
ρ(M,φ0) where φ0 : π1(M) −→ Γ′ is the induced factorization of φ [COT,
Proposition 5.13]. This is a consequence of the corresponding fact for the
canonical trace on a group von Neumann algebra.

(2.4) If Γ = Z and φ is non-trivial then ρ(M,φ) =
∫

z∈S1 σ(h(z))dz − σ0(h) if
h is a matrix representing the intersection form on

H2(W ; C[t, t−1])/torsion

and σ0 is the ordinary signature [COT, Lemma 5.4, Def. 5.3] (in fact we
prove in the Appendix that ρ(M,φ) is the integral of the Levine–Tristram
signature function of the knot K normalized to have value 0 at z = 1,
although this more precise fact is not strictly needed).

(2.5) If φ is the trivial homomorphism then ρ(M,φ) = 0.
If K is an oriented knot then there is a canonical epimorphism φ : π1(M) −→ Z.

If K has Arf invariant zero then there exists a spin 4-manifold W and a map
ψ : π1(W ) −→ Z such that ∂(W,ψ) = (M,φ). In fact we can assume π1(W ) ∼= Z.
Such a W is then a 0-solution for K (for M). In particular, ρ(M,φ) is always
defined for such φ. Let ρ(K) denote this canonical real number (the integral of
the normalized Levine–Tristram signature function of K). Note M−J = −MJ so
ρ(−J) = −ρ(J). The proof of the following technical result is deferred to Section 5.
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Proposition 2.6. There exists an infinite set {Ji | i ∈ Z+} of Arf invariant zero
knots such that {ρ(Ji)} is linearly independent over the integers.

3. Constructing n-solvable knots by genetic modification

We describe a satellite construction, that we call “genetic modification”, in which
a given seed knot K is altered by an infection knot J along an axis η. We then
evaluate the effect of such an alteration on the von Neumann ρ-invariants intro-
duced in section 2. The construction is a special case of J. Levine’s knot realization
construction via surgery on links and can be summarized as follows.

Seize a collection of parallel strands of K in one hand, just as you might grab
some hair in preparation for braiding. Then, treating the collection as a single fat
strand, tie it into the knot J . For example, applying this to a single strand of K
has the effect of altering K by the addition of the local knot J . This would be a
rather radical alteration. Applying this to two strands of K which are part of a
“band” of a Seifert surface for K has the effect of tying that band into a knot J .
In this simple case the construction agrees with the one used often by A. Casson,
C. Gordon, P. Gilmer, R. Litherland, D. Ruberman, C. Livingston and others
to create knots with identical Alexander modules but different Casson–Gordon
invariants. Various other versions of this construction have been useful in knot
and link theory (see e.g. [Lt], [Li], [CO], [C]).

In the application relevant to this paper, we will choose the seed knot K to be
a ribbon knot and choose a circle in S3\K (the axis of the modification) which
lies deep in the derived series of π1(S3\K) and yet bounds an embedded disk in
S3. The knot will pierce this disk many times. The alteration is to cut open K
along this disk and tie all the strands passing through into a knot J which we call
the infection (compare Definition 3.1 and the right-most part of Figure 1).

We named this procedure a “genetic modification” because, as opposed to a
general surgery, its controlling parameter, the axis, involves very precise and subtle
knowledge of the derived series of the knot group. A DNA strand is a million times
longer than the diameter of a cell and topoisomerases miraculously find the precise
locations on this strand to perform their genetic modifications. Analogously, the
knot group is infinitely long as measured by the derived series [C, Corollary 4.8]
and we use extremely precise control of this when choosing the axis (especially in
[CT]). On the other hand, the infection knots J that we use in the modification
are quite robust just like a virus seems to be a very robust thing.

This should be contrasted to the construction proposed by Casson–Gordon (to
create candidates for non-slice knots with vanishing Casson–Gordon invariants)
and to the more recent modification constructions of T. Stanford (inserting braids)
and K. Habiro (simple clasper modification). There one uses very little control
on the axis of the modification but the infecting knot J is a subtle knot (e.g. has
vanishing Casson–Gordon invariants or has vanishing finite type invariants up to
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a given degree).
Details of the general construction follow.

=~

K

ηx D2

lJ
EJ

K(J,η)

J

Figure 1

Let M and MJ , respectively, denote the zero framed surgeries on the knots
K and J , and E and EJ denote their exteriors. Suppose η is an oriented simple
closed curve in E, which is unknotted in S3. Choose an identification of a tubular
neighborhood of η with η × D2 in such a way that η × {1} ⊂ η × ∂D2 is a
longitude 	η, and {∗} × ∂D2 is a meridian µη. Form a new oriented manifold
E′ = (E− int(η×D2))∪EJ by an identification of ∂EJ with η×∂D2 which sends
µ−1

η to the longitude of J , denoted 	J , and sends 	η to µJ . Note that ∂E′ = ∂E =
K × S1 and since E ∪ (K × D2) = S3, E′ ∪ (K × D2) = (S3 − int(η × D2)) ∪ EJ .
Since η is unknotted, S3 − int(η × D2) is a solid torus ST and ST ∪ EJ

∼= S3

as can be confirmed by checking the identifications. Hence E′ ∪ (K × D2) ∼= S3.
Therefore E′ is the exterior S3 \ K ′ of a knot K ′ which is the image of K under
the identification E′ ∪ (K × D2) ∼= S3.

Definition 3.1. The new knot K ′ = K(J, η) is called the genetic modification of
the seed knot K with the infection knot J along the axis η. Since K ⊂ ST, K ′ is
a satellite of J .

It is left to the reader to see that K ′ is indeed the result of tying the strands
of K that “pass through the 2-disk spanned by η” into the knot J . Finally, if we
let M ′ denote the zero framed surgery on K ′, then M ′ = (M − int(η ×D2))∪EJ .
We shall show the following:

Proposition 3.1. If K is n-solvable, η ∈ π1(M)(n) and J has Arf invariant zero,
then K ′ = K(J, η) is n-solvable.

Hence one speculates that if one begins with a slice knot K, which is of course
n-solvable for each n, and η ∈ π1(M)(n) − π1(M)(n+1), then many different n-
solvable knots could be constructed as long as the derived series of π1(M) does
not stabilize. In fact it is proved in [C] that the derived series of a knot group
cannot stabilize unless it has Alexander polynomial 1 and that of π1(M) cannot
stabilize unless the Alexander polynomial has degree 0 or 2. The above speculation
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is also confirmed in [C].
We remark that if n-solvable is replaced by rationally n-solvable (see [COT,

section 4]) then the analogous result holds without a condition on the Arf invariant
of J . This is of interest in studying knots which bound disks in rational homology
balls.

We now want to show that many of these families of knots are different, even
up to concordance. For this purpose we consider the von Neumann signature
invariants of section 2 [COT, section 5].

Suppose one is given homomorphisms φ : π1(M) → Γ, φJ : π1(MJ) → Γ such
that φ([η]) = φJ([µJ ]) and Γ is a PTFA group. Then, if M ′ is as above, a unique
φ′ : π1(M ′) → Γ is induced which extends φ and φJ .

Proposition 3.2. Given K, J , η, φ, φJ as above,

ρ(M ′, φ′) = ρ(M,φ) + ρ(MJ , φJ )

whenever the right-hand side is defined.

Proof of Proposition 3.1. Let W be an n-solution for K and let WJ be the 0-solution
for J with π1

∼= Z discussed above Proposition 2.6. So ∂WJ = MJ = EJ ∪(S1×D2)
where S1×{∗} is µJ and {∗}×∂D2 is 	J . Let W ′ be the 4-manifold obtained from WJ

and W by identifying the solid torus S1×D2 ⊂ ∂WJ with η×D2 ⊂ ∂W . Observe
that ∂W ′ = M ′, the zero surgery on K ′ = K(J, η). We claim that W ′ is an
n-solution for K ′. First consider the Mayer–Vietoris sequence below

0 −→ H2(W ) ⊕ H2(WJ ) π∗−→ H2(W ′) ∂∗−→ H1(W ∩ WJ ) i∗−→ H1(W ) ⊕ H1(WJ )

Since W ∩ WJ 
 S1, H2(W ∩ WJ ) = 0 for any coefficients. Since the inclusion
W ∩ WJ → WJ induces an isomorphism on π1, the map i∗ is a monomorphism
with any coefficients. Thus π∗ is an isomorphism with any coefficients, and the
intersection and self-intersection forms on H2 split naturally. We may think of
an n-Lagrangian with its n-duals for W as being generated by finite collections of
based surfaces in W each of which lifts to the π1(W )(n)-cover (these were called
“n-surfaces” in [COT]; sections 7–8). These same surfaces are clearly n-surfaces in
W ′ since nth-order commutators in π1(W ) are nth-order commutators in π1(W ′).
Similarly consider the collection of “0-surfaces” generating a 0-Lagrangian and
its duals for WJ . Since the map π1(WJ ) → π1(W ′)/π1(W ′)(n) is trivial (since
π1(WJ ) is generated by η), these 0-surfaces are n-surfaces in W ′. It then follows
easily by naturality that the union of these collections of n-surfaces constitutes an
n-Lagrangian with n-duals for W ′ (see [COT]; sections 7–8). �

Proof of Proposition 3.2. Suppose ∂(W,ψ) = (M,φ) and ∂(WJ , ψJ ) = (MJ , φJ )
for some H1-bordisms as described in Section 2. Note that MJ = EJ ∪ (S1 ×
D2) where {1} × ∂D2 is a longitude of J . Let W ′ be the 4-manifold obtained
from WJ and W by identifying the solid torus S1×D2 ⊂ ∂WJ with η×D2 ⊂ ∂W .
Observe that ∂W ′ = M ′ and that ψ and ψJ piece together to give an extension
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of φ′ to ψ′ : π1(W ′) → Γ. Thus (W ′, ψ′) can be used to compute ρ(M ′, φ′). It
now suffices to show that the natural inclusions induce an isomorphism H2(W )⊕
H2(WJ ) → H2(W ′) with K coefficients. As above, H2(W ∩ WJ ) = 0 with any
coefficients. Now, appealing to the Mayer–Vietoris sequence, it will suffice to show
that H1(W ∩ WJ ;K) → H1(WJ ;K) is a monomorphism. If φ([µJ ]) = φ([η]) �= 0
then H1(W ∩ WJ ;K) = 0 since the induced Γ-cover of a circle is a union of lines
(alternatively use [COT]; Proposition 2.11). If φ([µJ ]) = 0 then φJ is the zero
map since π1(MJ ) is normally generated by [µJ ]. Hence we may assume ψJ is
the zero homomorphism. Therefore the coefficient system ψJ : Q[π1(WJ )] → K
factors as the augmentation ε : Q[π1(WJ )] → Q followed by the inclusion Z =
Q[{1}] ↪→ QΓ ↪→ K. Thus H1(WJ ;K) ∼= H1(WJ ; Q) ⊗Q K ∼= K and similarly for
H1(W ∩ WJ ;K). Since the inclusion W ∩ WJ → WJ induces an isomorphism on
H1( ; Q), it induces an isomorphism on H1( ;K) as well. �

The following application is what we will use in the proof of the main theorem.

Example 3.3. Suppose K is a ribbon knot, η ∈ π1(M)(n) and J has Arf invariant
zero. Then K ′ = K(J, η) is n-solvable by Proposition 3.1. Let W be the exterior
of a ribbon disk for K and let WJ be the (0)-solution for J with π1(WJ ) ∼= Z

as in section 2. Then let W ′ be the n-solution for K ′ formed as in the proof of
Proposition 3.1 by gluing WJ to W along η × D2. Suppose ψ′ : π1(W ′) → Γ is
a homomorphism defining, by restriction, φ′, ψ, φJ and ψJ from (respectively)
π1(M ′), π1(W ), π1(MJ ), and π1(WJ ). Then ρ(M ′, φ′) = ρ(MJ , φJ ) by Proposi-
tion 3.2 and 2.2. Then, (since π1(WJ ) ∼= Z is generated by η) using 2.3, 2.4, and
2.5, ρ(M ′, φ′) equals ρ(J) if φ(η) �= 1 and equals 0 if φ(η) = 1.

4. The Main Theorem

Theorem 4.1. F(2)/F(2.5) has infinite rank.

Proof. It is sufficient to exhibit an infinite set of (2.0)-solvable knots Ki, i ∈
Z+, such that no non-trivial linear combination is (2.5)-solvable. Let Kr be the
“seedling” ribbon knot shown in Figure 3.a and η be the designated circle just
as was used in [COT, section 6]. Let Ji be the knots of Proposition 2.6 and let
Ki = Kr(Ji, η) be the family of knots resulting from the grafting construction
of Example 3.3. It was shown in [COT, section 6] that each of these knots is
2-solvable and not (2.5)-solvable. Suppose that a non-trivial linear combination
#m

i=1n
′
iKi, n′

i �= 0, were (2.5)-solvable. We shall derive a contradiction.
We may assume all n′

i > 0 by replacing Ki by −Ki if n′
i < 0. We may also

assume that if m = 1 then n′
1 > 1. For simplicity let Mi denote MKi

, and
note that −Mi = M−Ki

because −Ki can be obtained by applying a reflection
to (S3,Ki). Let M0 denote the zero surgery on #n′

iKi and let W0 denote the
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putative (2.5)-solution.

W

W0

C

M1

±W1
 . . . 

±Wm

M0

Figure 2
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b)

.....

.....

Figure 3

From these assumptions we construct a very specific 2-solution W for M1. This
is shown schematically in Figure 2 where C and Wi are to be defined. The Wi,
i > 0, are the specific 2-solutions for Mi constructed as in Example 3.3. There
are ni copies of Wi where n1 = n′

1 − 1 and ni = n′
i if i > 1. The 4-manifold C is

merely a standard cobordism between zero surgery on a connected sum of knots
and the disjoint union of the zero surgeries on its summands. For the case of just
two knots A#B, the manifold C is described as follows. Beginning with a collar on
MAMB , add a 1-handle to get a connected 4-manifold whose “upper” boundary
is given by surgery on the split link A  B ↪→ S3, each with zero framing. Next
add a zero framed 2-handle along a circle as shown in Figure 3a. This completes
the description of C in this simple case. We need only show that the 3-manifold
in Figure 3a is homeomorphic to MA#B . This is accomplished most easily in the
language of Kirby’s calculus of framed links [Ki]. By “sliding” the A circle over
the B circle, one arrives at the equivalent description shown in Figure 3b. But
now the circle labelled B may be cancelled by the small linking circle, leaving only
the desired zero surgery on the connected sum. By iterating this idea, one sees
that our C has a handlebody decomposition, relative to

∐m
i=1 n′

iMi, consisting
of (

∑m
i=1 |ni|) 1-handles and the same number of 2-handles. The 1-handles have
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no effect on H1 or H2, while the 2-handles serve to equate all the meridional
generators of H1 (and thus do not affect H2). Hence H1(C; Z) ∼= Z and the
inclusion from any of its boundary components induces an isomorphism on H1;
and H2(C) ∼= H2(n′

iMi). Moreover, in H2(C), the generator of H2(M0) is equal
to the sum of generators of H2 of the other components of ∂C.

We now verify that W is an H1-bordism for M1, and identify H2(W ). The
inclusions induce isomorphisms H1(Mi; Z) → H1(Wi; Z). It then follows that
H1(M1) → H1(W ) ∼= Z is an isomorphism. Now consider a Mayer–Vietoris se-
quence for W = C∪W ∗ where W ∗ = C − W . We see that H1(C∩W ∗) → H1(W ∗)
is injective by the remarks above. Note that the boundary map H3(Wi,Mi) →
H2(Mi) is an isomorphism since it is dual to the inclusion H1(Wi) −→ H1(Mi).
Thus for i ≥ 0, H2(Mi) → H2(Wi) is the zero map. Therefore H2(C ∩ W ∗) →
H2(W ∗) is the zero map. By the last sentence of the previous paragraph,
H2(C ∩ W ∗) → H2(C) is surjective. It follows that

H2(W ) ∼= H2(W ∗) ∼= H2(W0)
m⊕

i=1

niH2(Wi).

It is not difficult to see that W is a spin bordism since each individual piece is
spin with 2 spin structures and Ωspin

3 (Z) ∼= Z2 is given by the Arf invariant.
To show that W is a 2-solution for M1, we must exhibit a 2-Lagrangian with 2-

duals. But this is obtained merely by taking the “union” of the 2-Lagrangians and
2-duals for W0 and each ±Wi which appears as part of W . (Recall that since W0 is
a (2.5)-solution it is also a 2-solution). More precisely suppose, for example, that
{L1, . . . , Lm}, {D1, . . . , Dm} are 2-surfaces in W0 which generate the 2-Lagrangian
and its dual 2-Lagrangian for W0. In particular these surfaces lift to W

(2)
0 and so

the image of π1(Li) in π1(W0) is contained in π1(W0)(2). Thus this image is con-
tained in π1(W )(2) and so these surfaces lift to W (2). Similarly by functoriality of
intersection with twisted coefficients, these surfaces have the required intersection
properties when considering the intersection form on W with Z[π1(W )/π1(W )(2)]
coefficients. An identical argument is used for each Wi, making it clear that the
union of these 2-surfaces represents a 2-Lagrangian and 2-duals for W , completing
the demonstration that W is a 2-solution for M1.

Since W is a 2-solution for M1, Theorem 4.6 of [COT] guarantees the existence
of certain non-trivial homomorphisms φ2 : π1(M1) → ΓU

2 , for a certain universal
solvable group ΓU

2 , which extend to π1(W ). Moreover, if W is fixed, such homo-
morphisms actually factor through a much smaller group (the image of π1(W ), for
example). This improvement was mentioned in Remark 4.7 of [COT] and was dis-
cussed in detail in section 6 of that paper for precisely the case at hand. We shall
repeat some of that argument. Let Γ0 = Z and let φ0 : π1(M1) → Γ0 be the canon-
ical epimorphism which extends uniquely to an epimorphism ψ0 : π1(W ) → Γ0.
Recall that the classical Alexander module A0(M1) = H1(M1; Q[t, t−1]) is isomor-
phic to Q[t, t−1]/(p(t))2 where p(t) = t−1 − 3 + t (this computation was discussed,
but left to the reader in section 6 of [COT]). Let A0(W ) = H1(W ; Q[t, t−1]). By
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[COT, Theorem 4.4], since W is a 1-solution for M1, the kernel of the inclusion-
induced map j∗ : A0(M1) → A0(W ) is self-annihilating with respect to the Blanch-
field form B	0. Since A0(M1) has a unique proper submodule P0, the latter is in
fact this kernel. Choose a non-zero p0 ∈ P0, inducing φ1 : π1(M1) → ΓU

1 by
[COT, Theorem 3.5] (recall ΓU

1 = Q(t)/Q[t, t−1] � Γ0). By [COT, Theorem 3.6]
φ1 extends to ψ1 : π1(W ) → ΓU

1 . Using the argument of ([COT], see just before
Proposition 6.1), we can replace ΓU

1 by a subgroup Γ1 which contains the image of
φ1 and is isomorphic to Q[t, t−1]/(p(t)m)�Γ0 for some positive integer m; replace
φ1 by restricting its image and replace ψ1 by a new map extending this restriction.
We re-label these new maps by φ1 and ψ1. Continuing as in [COT], we choose a
subring R1 of the field of fractions of ZΓ1 where R1 = (Q[[Γ1,Γ1]] − {0})−1QΓ1

and then set A1(M1) = H1(M1;R1), A1(W ) = H1(W ;R1) using the coefficient
systems φ1 and ψ1 respectively. Then, since W is a 2-solution, the kernel of
j∗ : A1(M1) → A1(W ) is self-annihilating with respect to the non-singular link-
ing form B	1 [COT, Theorem 4.4]. By Proposition 6.1 of [COT], A1(M1) has a
unique self-annihilating submodule P1 which is therefore the kernel of j∗. Choose
a non-zero element p1 ∈ P1 (by [COT, Proposition 6.2b] P1 is non-trivial). This
induces φ2 : π1(M1) → Γ2 (Γ2 = K1/R1 �Γ1 where K1 is the quotient field of R1).
We note that the loop η is chosen so that φ2(η) �= e (see below Proposition 6.1
in [COT]). Since W is a 2-solution for M1, Theorem 3.6.1 of [COT] applies (with
n = 2, x = p1) to show that φ2 extends to ψ2 : π1(W ) → Γ2. Therefore ρ(M1, φ2)
is defined and can be computed using (W,ψ2).

We shall now compute ρ(M1, φ2) using (W,ψ2). Let φ(i,j) denote the restriction
of ψ to the jth copy of π1(Mi) 1 ≤ j ≤ ni, and let φ0 denote the restriction of
ψ to π1(M0). Note that each of these homomorphisms is non-trivial since the
generator of H1(C; Z) ∼= H1(M1; Z) ∼= Z is carried by each Mi and since φ2 and
ψ2 agree on the abelianizations. Let K2 denote the quotient (skew) field of ZΓ2.
Consequently H∗(Mi;K2) = 0 for i ≥ 0 (Propositions 2.9 and 2.11 of [COT]),
and hence a Mayer–Vietoris sequence shows that H2(W ;K2) ∼= H2(W0;K2) ⊕
H2(C;K2) ⊕ H2(W1;K2) · · · ⊕ H2(Wm;K2) where −Wi occurs ni times and the
coefficient systems on the subspaces of W are induced by inclusion. Similarly the
intersection form on H2(W ;K2) splits as such a direct sum. Moreover we claim
that H2(C;K2) = 0. Let ∂+C = ∂W0 and ∂−C =

∐
n′

iMi. We have observed that
(C, ∂−C) is a relative 2-complex with an equal number of 1-handles and 2-handles.
The claim will follow from Lemma 4.2 which shows that, even though C is not an
integral homology cobordism, it is a K2-homology cobordism.

Lemma 4.2. Suppose (C, ∂C) is a compact, oriented 4-dimensional Poincaré com-
plex such that ∂C = ∂+C  ∂−C, (C, ∂−C) is homotopy equivalent to a finite
(relative) 2-complex with no 0-handles and a equal number of 1- and 2-handles.
Suppose also that β1(∂+C) = 1 and that φ : π1(C) → Γ is non-trivial on π1(∂−C)
where Γ is a poly-torsion-free-abelian group with quotient field KΓ. Then

H∗(C, ∂+C;KΓ) ∼= H∗(C, ∂−C;KΓ) ∼= H∗(C;KΓ) ∼= 0.



116 T. D. Cochran, K. E. Orr and P. Teichner CMH

Proof. It follows that φ is non-trivial on π1(C) and π1(∂+C) and so H0(C;K) ∼=
H0(∂+C;K) ∼= H0(∂−C;K) ∼= H0(C, ∂+C;K) ∼= H0(C, ∂−C;K) ∼= 0 by [COT,
Proposition 2.9]. Moreover H1(C, ∂+C;K) ∼= H3(C, ∂−C;K) ∼= 0 since (C, ∂−C) is
a 2-complex. Since β1(∂+C) = 1, H1(∂+C;K) = 0 by [COT, Proposition 2.11] and
H2(∂+C;K) ∼= H1(∂+C;K) ∼= 0 by Remark 2.8.3 of that paper. Combining this
with the previous facts, we see that H1(C;K) ∼= 0 and hence that H1(C, ∂−C;K) ∼=
0 by consider the sequence of the pair (C, ∂−C). Finally, note that the chain
complex obtained from the cell-structure of the 2-complex (C, ∂−C), by lifting to
the Γ-cover and tensoring with K, has only two non-zero terms, which are free
K-modules of the same rank. Since H1 of this chain complex is zero, the boundary
map ∂2 is an epimorphism and hence an isomorphism. Thus H2(C, ∂−C;K) = 0
which implies H2(C;K) vanishes, implying H2(C, ∂+C;K) = 0, and the claimed
results in relative homology and hence homology now follow. �

Thus, since σ(2) is a homomorphism on Witt classes of non-singular forms with
K2 coefficients, we see that

ρ(M1, φ2) = ρ(M0, φ0) +
m∑

i=1

ni∑
j=1

ρ(−Mi, φ(i,j)).

Since φ0 extends to the (2.5)-solution W0, ρ(M0, φ0) vanishes by (2.2). Let
εij equal 0 or 1 according as φ(i,j)(η) equals 0 or not. Since φ(i,j) extends to
−Wi, Example 3.3 establishes that ρ(−Mi, φ(i,j)) = −εijρ(Ji). This shows that
ρ(M1, φ2) +

∑m
i=1 ciρ(Ji) = 0 where ci =

∑ni

j=1 εij is non-negative.
It will now suffice to show that ρ(M1, φ2) equals ρ(J1), for this will, for any

ci, contradict Proposition 2.6. The argument of [COT, section 6] (outlined earlier
in this proof as regards extension to W ) shows that φ2 extends to the manifold
W1 as constructed in Example 3.3, the crucial facts being that W1 is a 2-solution
and the uniqueness of the self-annihilating submodules for the ordinary and first-
order generalized Alexander modules of K1. Hence, by 2.3 ρ(M1, φ2) = ρ(J1) since
φ2(η) �= e. This contradiction establishes that no non-trivial linear combination
of the Ki is (2.5)-solvable and hence proves the Theorem. �

5. Appendix: Some results on slice knots

The purpose of this section is to prove the following two results, as well as to prove
Proposition 2.6. Only the latter is required for our main theorem.

Proposition 5.1. For ω ∈ S1, let σω be the Levine–Tristram signature of a knot
K. Then the (reduced) von Neumann signature of K (denoted ρ(K) in Section 2)
is the integral of these signatures σω, integrated over the circle normalized to length
one.
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Theorem 5.2. Suppose K is a 1.5-solvable knot (for example a slice knot) whose
Alexander polynomial is not 1 and which admits a Seifert surface F of genus 1.
Then there exists a homologically essential simple closed curve, J , on F that has
self-linking number zero and such that the integral of the Levine–Tristram signature
function of J vanishes.

The above theorem was announced in [COT]. In the case of slice knots, it first
appeared in the unpublished Ph.D. thesis of D. Cooper and can also be compared
to [Gi, Theorem 4]. It is not known if the latter theorem implies ours or vice-versa.

Proof of Theorem 5.2. Suppose W is a 1.5-solution for M , the zero framed surgery
on K. Let G = π1(W ), let A = G(1)/G(2) ⊗Z[t,t−1] Q[t, t−1], and let Γ = A � Z.
Since A is a torsion-free abelian group, Γ is a PTFA (poly-torsion-free-abelian-
group) and is 1-solvable. Moreover there is a canonical homomorphism ψ : G → Γ
since G/G(2) ∼= (G(1)/G(2)) � Z. Let φ : π1(M) → Γ be the composition of
j∗ : π1(M) → π1(W ) with ψ. By 2.2, ρ(M,φ) = 0. Since H1(M) ∼= H1(W ) ∼=
H1(Γ) ∼= Z we can consider the inclusion induced map on infinite cyclic covers,
j∗ : H1(M ; Q[t, t−1]) → H1(W ; Q[t, t−1]). The former group is isomorphic to the
classical rational Alexander module A of K (since the longitude lies in the second
derived) and the latter is the group denoted A above. Since W is a 1-solution
for M , the kernel of j∗ is a submodule which is self-annihilating with respect to
the classical Blanchfield form (apply [COT, Theorem 4.4] with n = 1 and Γ = Z).
This fact is well known in case W is the exterior of a slice disk for K. In particular,
this implies that the kernel of j∗ and the image of j∗ have rank (over Q) equal to
one-half the degree of the Alexander polynomial, which is, by assumption, positive.
Moreover this implies that K is algebraically slice. The following algebraic fact
about a genus 1 algebraically slice knot can be found in [Gi, Section 5]. A is
a cyclic module with precisely 2 proper submodules each generated by a simple
closed curve on F of zero self-linking number. Let J denote the proper submodule
contained in kernel (j∗). It follows that J represents an element of kernel φ.
Now construct a cobordism over Γ from (M,φ) to (MJ , φ′) as follows, where MJ

is zero surery on J . To M × {1} ⊂ M × [0, 1] attach a zero-framed 2-handle
along J × {1}. The result of such a surgery can be seen to be homeomorphic to
MJ#S1 × S2 by sliding the zero-framed 2-handle K × {1} twice over J so that
it becomes unknotted and unlinked from J . Adding a 3-handle along {pt} × S2

completes the cobordism. Since J ⊂ ker φ, φ extends over the cobordism, inducing
φ′ : π1(MJ ) → Γ. Since π1(MJ) is normally generated by the meridian of J , which
clearly is null-homologous in the cobordism, φ′ factors through [Γ,Γ] = A. Since
H1(MJ ) ∼= Z, the image of φ′ is either 0 or Z. We claim it is the latter. For since
the image of j∗ is not zero, there is an element of the Alexander module that maps
non-trivially under j∗. Let γ ∈ π1(M − F ) represent this element. Then γ maps
non-trivially under φ. Since the 2 and 3-handles above are attached disjointly
from M − F , γ represents an element of π1(MJ ) which maps non-trivially under
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φ′. Thus the image of φ′ is Z. By Lemma 4.2, this cobordism is a KΓ-homology
cobordism and thus 0 = ρ(M,φ) = ρ(MJ , φ′). Moreover ρ(MJ , φ′) = ρ(J) which
equals the integral of the signature function of J (by 2.3, 2.4 and Proposition 5.1).

�

We now move to the proof of Proposition 5.1. Note that even though the σω

are integers, the integral is in general only a real number. We first give the relevant
definitions and then derive Proposition 5.1 from Lemma 5.4.

First recall that the Levine–Tristram signature is defined as follows: Pick a
Seifert surface F for the knot, together with a basis of embedded curves a1, . . . , a2g

on F . Using the positive push-off’s a↑
i of ai into 3-space, the corresponding Seifert

matrix is defined using linking numbers in S3:

Sij := lk(ai, a
↑
j ).

Then for ω ∈ S1, σω is the signature of the complex hermitian form

λω(F ) := (1 − ω−1) · S + (1 − ω) · ST .

Instead of choosing a Seifert surface for the knot K, one can also choose a
4-manifold W which bounds the 0-surgery MK on K. One can also arrange that
W has signature zero (by adding copies of ±CP2) and that π1W ∼= Z, generated
by a meridian t of the knot. This follows from the fact that the bordism group
Ω3(S1) vanishes.

For the purpose of this section, let’s call a 4-manifold W as above a Z-bordism
for the knot K. The following twisted signatures are associated to it: Define σω(W )
to be the signature of the intersection form λω(W ) on H2(W ; Cω), where Cω is the
module over Z[π1W ] = Z[t, t−1] obtained by letting t act on C via multiplication by
ω. The isomorphism Ω4(S1) ∼= Z, given by the (untwisted!) signature, implies by
the additivity and bordism invariance of all twisted signatures that the signatures
of λω(W ) are in fact independent of the Z-bordism W for K.

The following result was proven in [COT, Section 5] and will be used in order
to avoid having to recall the definition of the von Neumann signature (or L2-
signature). Note however that the (reduced) L2-signature of a knot is by definition
the (reduced) L2-signature of a Z-bordism W . By [COT, Lemma 5.9.4] this is
independent of the choice of W . Note also that since we have required that the
ordinary signature of W is zero, the reduced and unreduced L2-signatures are
identical.

Lemma 5.3. Let W be a Z-bordism for a knot K. Then the L2-signature of K is
the integral of the twisted signatures σω(W ), integrated over the circle normalized
to length one.

In order to connect to the setting of [COT, Section 5], note that the universal
coefficient spectral sequence implies that for any C[t, t−1]-module M there is an
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isomorphism
H2(W ;M) ∼= H2(W ; C[t, t−1]) ⊗C[t,t−1] M.

First apply this isomorphism to M = UZ, the algebra of unbounded operators
affiliated to the von Neumann algebra NZ. It follows that the intersection form
used in [COT, Def.5.8] to define the L2-signature of W is nothing else but λW ⊗UZ,
where λW is Wall’s Z[t, t−1]-valued intersection form on H2(W ; Z[t, t−1]). This
implies by [COT, Lemma 5.6] that the L2-signature of W is the L2-signature of
the form λW ⊗Z C on the free C[t, t−1]-module H2(W ; C[t, t−1])/Torsion.

Finally, apply the isomorphism above to M = Cω and observe that the inter-
section form λω is obtained from the C[t, t−1]-valued intersection form λW ⊗ C

by substituting ω for t. Hence the discussion of [COT, Def.5.3] and in particular
Lemma 5.4 apply to prove Lemma 5.3.

We return to the proof of Proposition 5.1 above. It now suffices to prove the
following lemma.

Lemma 5.4. For a given Seifert surface F for K, there exists a Z-bordism WF

such that the signatures of λω(F ) and λω(WF ) agree for all ω ∈ S1.

Proof. First observe that the equality is true for the untwisted case ω = 1 since
both signatures are zero. This holds for any Z-bordism W . All other signatures
can be calculated after inverting the element (1 − t) since for ω �= 1, the twisted
homology is given as follows:

H2(W ; Cω) ∼= H2(W ; C[t, t−1]) ⊗C[t,t−1] Cω
∼= H2(W ; Λ) ⊗Λ Cω

where Λ := C[t, t−1, (1 − t)−1]. The second isomorphism uses the fact that Λ is
a flat module over the ring C[t, t−1]. Note that we are using ω �= 1 to make C a
module over Λ (again denoted by Cω).

We finish our proof by showing that for a given Seifert surface F for K, there
is a certain choice of W = WF such that the intersection form on H2(WF ; Λ) is
represented by the matrix

λ(F ) := (1 − t−1) · S + (1 − t) · ST

where S is again the Seifert matrix for a basis of embedded curves a1, . . . , a2g on
F . The first part of our computation follows [Ko] closely.

Let VF be the complement of a neighborhood of the Seifert surface F pushed
into the 4-ball D4. We will later modify VF to get the desired 4-manifold WF .
π1(VF ) = 〈t〉 ∼= Z. We construct the universal cover of VF in the usual manner.
Cut along the trace of pushing the surface F into the 4-ball. The cut manifold is
homeomorphic to D4. This determines two embeddings of F × I in the boundary
of D4 and we label the positive side F+ and the negative side F−. Construct the
universal cover of VF from countably many copies of D4 labelled tkD4, k ∈ Z by
identifying F+ ⊂ tkD4 with F− ⊂ tk−1D4 in the obvious manner. Each 4-ball is a
fundamental domain of this cover.
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The Mayer–Vietoris sequence of this decomposition gives an isomorphism of
Z[Z]-modules

H2(VF ; Z[Z]) ∂−→ H1(F ; Z) ⊗Z Z[Z].

Thus, H2(VF ; Z[Z]) is a free Z[Z] module generated by H1(F ). Furthermore, a
basis of H2(VF ; Z[Z]) ∼= π2(VF ) is obtained from a basis of curves of H1(F ; Z),
ai ⊂ F , by choosing immersed 2-disks

(Σ+
i , ∂Σ+

i ) ⊂ (tD4, F+) and (Σ−
i , ∂Σ−

i ) ⊂ (t0D4, F−)

and orienting Σi := Σ+
i ∪ Σ−

i (and F ) so that

∂Σ+
i = a↑

i and ∂Σ−
i = −a↓

i .

By the Mayer–Vietoris argument given above and the usual geometric interpre-
tation of the connecting homomorphism, the spheres Σ1, . . . ,Σ2g together give a
basis for the free Z[Z] module H2(VF ; Z[Z]). We now compute the equivariant
intersection form λVF

on H2(VF ; Z[Z]) ∼= π2(VF ) given by

λVF
(Σi,Σj) =

∑
k

(Σi · tkΣj)tk ∈ Z[Z],

where · is the usual (integer valued) intersection number of the 2-spheres Σi in the
universal cover of VF .

By general position, we may assume that Σi and Σj do not intersect each
other along F × I (since they intersect F × I only in their boundary circles).
Moreover, Σi · tkΣj = 0 for k �= −1, 0, 1. Recalling that Si,j = lk(ai, a

↑
j ) is the

(i, j) entry of the Seifert matrix S associated to the Seifert surface F , we now
compute equivariant intersection numbers as follows.

Σi · Σj = Σ−
i · Σ−

j + Σ+
i · Σ+

j = lk(−a↓
i ,−a↓

j ) + lk(a↑
i , a

↑
j )

= lk(ai, a
↓
j ) + lk(ai, a

↑
j ) = Sj,i + Si,j .

Note that by symmetry, this is independent of how the curves ai respectively aj

are pushed into general position. Moreover, one has

Σi · tΣj = Σ+
i · tΣ−

j = lk(a↑
i ,−a↓

j ) = −lk(aj , a
↑
i ) = −Sj,i,

Σi · t−1Σj = Σ−
i · t−1Σ+

j = lk(−a↓
i , a

↑
j ) = −lk(ai, a

↑
j ) = −Si,j .

Thus the intersection form on H2(VF ; Z[Z]) is given by the matrix

λVF
(Σi,Σj) = (1 − t−1)Si,j + (1 − t)ST

i,j = λ(F )i,j

as claimed.
Even though it might look now like we are done, the 4-manifold VF isn’t quite

what we want since it’s boundary is not MK . By construction, ∂VF is obtained
from the knot complement by attaching F × S1 (instead of D2 × S1 to get MK .)
We turn VF into a 4-manifold WF with the correct boundary by attaching round
handles (D2 × D1) × S1 to a disjointly embedded half basis of curves on F . In
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other words, we start with g surgeries turning F into a 2-disk and then cross with
the circle. Clearly the boundary of WF is MK . What happened to the equivariant
intersection form?

Here we make use of the ring Λ to simplify life tremendously. Lemma 5.6
below and an easy Mayer–Vietoris sequence argument imply that the inclusion
induces an isomorphism H2(VF ; Λ) ∼= H2(WF ; Λ), and thus concludes the proof of
Proposition 5.1. �

Remark 5.5. The above proof inverts 1− t to save a lot of work. The more geo-
metric reader will find the intersection pairing for WF before localization computed
in [Ko].

One should compare that work with the simplicity of the following

Lemma 5.6. Let X be a finite CW-complex and t be a generator of π1S
1. If

Λ := Z[t, t−1, (1 − t)−1], then

H∗(X × S1; Λ) = 0

if the twisting is given by the projection p2 : X × S1 → S1.

Proof. The differential in the cellular chain complex of the universal cover of S1 =
e0 ∪ e1 is given by multiplication with (t−1). This is clearly an isomorphism after
tensoring with Λ. Hence, this chain complex is acyclic, and thus contractible.

The cellular chain complex of the Z-cover of X × S1 with Λ coefficients is the
tensor product of the cellular chains of X with the contractible Λ-module chain
complex for S1. A tensor product with a contractible chain complex is again
contractible, and therefor acyclic. �

Remark 5.7. It is clear that the manifold VF constructed in Lemma 5.4 has a
spin structure as a subset of the 4-ball. The reader is invited to check that the
Z-bordism WF is a spin manifold if and only if the original knot K has trivial Arf
invariant. For example, if the Arf invariant is trivial then one may choose a half
basis of curves a1, . . . , ag on F with even self-linking number. This implies that
the round surgeries leading from VF to WF are spin structure preserving.

We now return to prove the technical Proposition 2.6.

Proof of 2.6. Let Jm, m ≥ 1, be a knot with Alexander polynomial ∆(t) = 2mt−
(4m−1)+2mt−1. Such a knot necessarily has zero Arf invariant (see Theorem 10.4
of [Ka]). Let M be the zero surgery on Jm and W be a compact, spin 4-manifold
with ∂W = M , π1(W ) ∼= Z and j∗ : H1(M ; Z) −→ H1(W, Z) an isomorphism. By
considering the long exact homology sequence for the pair (W,M) with Z[t, t−1]
coefficients (using the canonical epimorphisms φi, ψi to Z to define the coefficient
systems) one sees that the order of the Alexander module H1(M ; Q[t, t−1]) is the
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determinant of a matrix h representing the intersection form on H2(W ; Q[t, t−1]).
The (reduced) signature function σ(h(z)) − σ0(h) : S1 −→ Z is a locally-constant
function which is 0 at z = 1 and changes value only (possibly) at the two zeros
of det h(z)=±∆(z) which are e±iθm , where 0≤θm≤ π

2 and cos θm =(4m−1)/4m.
Since det h(z) changes sign at eiθm , σ(h(z)) must change value there. Thus
σ(h(−1)) = am, for some non-zero integer am (actually ±2), and ρ(Mm, φm) =
am(π − θm)/π. To prove 2.6, it will suffice to prove that there exists a infinite
collection of integers m such that {θm} is linearly independent over the integers.

Choose primes pi, 5 ≤ p1 < p2 < · · · < pj < . . . , each congruent to 1 modulo 4,

and set mj = 1
8 (pj − 1)2. We claim that if Θj = cos−1

(
4mj−1
4mj

)
, then {Θj} is

linearly independent over the rationals.

Lemma 5.8. Suppose 5 ≤ p1 < p2 < · · · < pn are primes. Let ξj = i
√

pj(pj − 2)
where i =

√−1. Then [Q(ξ1, . . . , ξn) : Q] = 2n and the Galois group over Q is

(Z2)n generated by automorphisms φj where φj(ξ�) =

{
−ξ� if 	 = j

ξ� if 	 �= j
.

Proof of Lemma 5.8. One verifies easily that the Lemma is true for n = 1. Now
assume [Q(ξ1, . . . , ξk−1) : Q] = 2k−1 for any increasing sequence of primes 5 <
p1 < · · · < pk−1. We shall show [Q(ξ1, . . . , ξk) : Q] = 2k. It suffices to show ξk

is not in Q(ξ1, . . . , ξk−1). If it were then there are α, β ∈ Q(ξ1, . . . , ξk−2) with
ξk = α + βξk−1. Squaring each side yields

ξ2
k = (α2 + β2ξ2

k−1) + 2αβξk−1.

Since ξ2
k, ξ2

k−1, α and β lie in Q(ξ1, . . . , ξk−2) and since, by the inductive hypothesis,
ξk−1 /∈ Q(ξ1, . . . , ξk−2), we have αβ = 0. If β = 0 then ξk ∈ Q(ξ1, . . . , ξk−2). This
will contradict the induction hypothesis for the sequence 5 < p1 < · · · < pk−2 < pk.
Suppose α = 0. Since β = γ + δξk−2 where γ, δ ∈ Q(ξ1, . . . , ξk−3), by squaring
each side of ξk = βξk−1 and applying induction we again conclude γδ = 0. As
above if δ = 0 then β ∈ Q(ξ1, . . . , ξk−3) so ξk ∈ Q(ξ1, . . . , ξk−3, ξk−1) contradicting
the induction hypothesis. Thus γ = 0 and ξk = δξk−2ξk−1. We continue in this
fashion until we conclude ξk = Θξ1ξ2 . . . ξk−1 where Θ ∈ Q, implying

−pk(pk − 2) = (r2/s2)ξ2
1 . . . ξ2

k−1.

Multiplying by s2 yields an equation over Z which has no solution since pk divides
the left-hand side an odd number of times and the right-hand side an even number
of times. This contradiction finishes the proof that [Q(ξ1, . . . , ξk) : Q] = 2k.

Consider the subgroup of the Galois group generated by the φj . The subset
{φi1φi2 . . . φim

| 1 ≤ φi1 < · · · < φim
≤ n} is easily seen to contain 2n distinct

elements of order 2 and the result follows. �

Now suppose
∑n

j=1 cjΘj = 0 where cj ∈ Z. Multiplying by i and exponentiat-
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ing yields
n∏

j=1

(
4mj − 1

4mj
+

ξj

4mj

)cj

= 1.

Evaluating φj on each side yields that
(

4mj−1
4mj

+ ξj

4mj

)cj

is real and hence (being of

norm 1) is ±1. Thus 4mj−1
4mj

+ ξj

4mj
is a primitive rth

j root of unity for some rj | cj .
Since [Q(ξj), Q] = 2, rj equals 3, 4 or 6. But, given the bound on mj , one checks
by inspection that this is not the case. This is a contradiction. �
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