f: U copen C differentiable if lim f(z+h)-f(z) exists TFAE:

equivalently f complex differentiable

iff f real differentiable [as IR] - IR]

- f is complex diff

and satisfies $u_x = v_y$ and $u_y = -v_x$ on all of $u_x = v_y$ and $u_y = v_x$ - f is cont. complex diff

- f is infinitely diff on $u_x = v_y$ and $u_x = v_y$ cauchy-Riemann

equation

- f is infinitely diff on $u_x = v_y$ and $u_y = v_x$ $v_x = v_y$ and $v_y = v_x$ $v_x = v_y$ $v_y = v_y$ $v_x = v_y$ $v_y = v_y$ holomorphic Morera's Theorem: f holo on U iff Contour integral: $\gamma: [a,b] \rightarrow U$ (sufficiently small) $f(z) dz = 0 \text{ for all (sufficiently small)} \\
\text{triangles in } U \\
\text{including for all (sufficiently small)} \\
\text{for a$ If for analytic, then for analytic. $\int_{\Delta} f(z) dz = \int_{n\to\infty}^{1} f_n(z) dz \stackrel{\text{d}}{=} \lim_{n\to\infty} \int_{\Delta} f(z) dz$ \ \f(z)dz - \ \full_n(z)dz \ $\left| \int_{0}^{b} \left(f(y(t)) - f_{n}(y(t)) \right) \gamma'(t) dt \right|$ $\leq \sup_{\Lambda} |f(z) - f_{\Lambda}(z)| \cdot length(\Delta)$ \(\begin{aligned}
\(\begin{aligned}
\beg

$\leq \int_a^b M y'(t) dt$ $\leq \sup_A f(t) - f_A(t) \cdot eagur(L) $ $M \cdot L$
Open mapping theorem
Maximum modulus principus f(z) constant
A maximum in U, then Shound on 151 on ass Shound on 151 on ass Shound
f: U-N bijection of map from Uto
(a (3)
The comply connected
Riemann Mapping Thm: It Washing agrivalent (no holes), U = C, then U is conformally equivalent
2K, exp(z), (az+b) Möbius Transformations Linear Fractional Transformations
2K, exp(2), (2+d) Linear Fractional Trans
X 2 210 € ad-bc≠0
2) 22 d Cusas Cusas Cusas

circles/lines to circles/lines (lines are circles through a) = = = = > 00 determined by where they send 3 points $\frac{az+b}{cz+d} \longleftrightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ az+b o ez+f (cd)[ef] $\left(\frac{az+b}{cz+d}\right)^{-1}$ as function Ex: H - D

Schwarz lemma: $f: \mathbb{D} \to \mathbb{D}$, f(0) = 0, $\Rightarrow |f(z)| \le |z|$, eq at any $z \ne 0 \Rightarrow f = e^{i\theta}z$ |f'(z)|

 $A + I(D) = \{e^{i\theta} = -\alpha \}$ Aut(C) = $\{a \neq +b\}$

```
Aut(D) = \{e^{i\theta} = a\}, Aut(C) = \{a \neq b\}
(Conformal D-D).
                               Avt(\hat{c}) = \{\frac{az+b}{(z+d)}\}
                   (more generally: any holo f: Ĉ→Ĉ is rational)
Isolated Singularities
                                     f: U-{20} -> C holo
                             f has a Lowert exponsion
                                      2 ax (2-20)
                  removable (ax=0 for k≤-1)
                 equivalent to f bounded near 20
(Riemannis Thm)

pole (ox = 0 for sufficiently negative k)

equivalent to for so as 2->20

equivalent to for so as 2->20
              - essential singularity (axto for obly
               Casorati-Weierstass: many K<-1)

Image f (Be(20) (203) dense in C

Liouville's Thm: Si C-2 C bounded, then
```