Field extensions

$$F \subseteq E$$

 $[E:F] = dimension of E$
 $as an F-vector space$
 $Ex: [Q(VZ):Q] = 3$
 $Q(VZ)$ spanned by $1, VZ, VH$
 $[L:K][K:F] = [L:F]$
Finite Fields
For each prime power p^{K} , there is
a unique field of order p^{K} , up to Theorem
 $[F_{pK} : F_{p}] = K$
 $F_{pi} \subseteq F_{pk} \iff j|K$
In F_{pK} , every element satisfies $x^{p^{K}} = x$
 $x^{p^{K}} - x = TT(x-\alpha)$
 $a \in F_{pK}$
 F_{pK} is the "splitting field" $x^{p^{K}} - x$
 $x \mapsto x^{p^{K}}$ is an automorphism of
each finite Field of order p_{i} .
 $(xy)^{F} = x^{P}y^{r}$ $(x+y)^{P} = x^{P} + y^{P}$
 F is a field of characteristic p , and
 $\frac{y(x-1)^{P} = x^{P}y^{r}}{p}$ in on extension

of F, then
$$f(x)$$
 has p distinct roots in FW.
Solution: $f(x+1) = (x+1)^{p} - (x+1) + 3 = x^{p} + 1 - x - 1 + 3}$
 $= x^{p} - x + 3 = f(x)$
 $f(\alpha) = 0$, $f(\alpha+1) = 0$, ..., $f(\alpha+p-1) = 0$
 p distinct roots in $F(\alpha)$.
Number Fields: Finite extension of Q
- Quadratic Number Fields: $Q(Jm)$, m squarefree
 $[Q(Jm):Q] = 2$ $(Q(Jm) = 0 + 3)$
 $[Q(Jm):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $[Q(Jm):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $Gal(Q(Jn)):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $Gal(Q(Jn)):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $Gal(Q(Jn)):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $Gal(Q(Jn)):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $Gal(Q(Jn)):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $Gal(Q(Jn)):Q] = Q(n)$, $5n = e^{2\pi i n}$
 $Gal(Q(Jn)):Q] = Q(Jn)$
 $a = field automorphism$
Show that $Q(Jp)$ is a squareform to n
 $is = a field = automorphism$
Show that $Q(Jp) \ddagger Q(Jp)$
 $Show that $Q(Jp)$ has a squareford of p
 $(Jp^{2} = p)$
 $Suppose (a + bJp)^{2} = p$
 $a^{2} + b^{2}g + 2abV = p$
 $= 0 \Rightarrow a=0 \text{ or } b=0$
 $b^{2}g = p$
 $a^{2} + b^{2}g + 2abV = p$
 $= 0 \Rightarrow a=0 \text{ or } b=0$
 $b^{2}g = p$
 $a^{2} + b^{2}g = 2abV = p$
 $= 0 \Rightarrow a=0 \text{ or } b=0$
 $b^{2}g = p$
 $a^{2} + b^{2}g = 2abV = p$
 $= 0 \Rightarrow a=0 \text{ or } b=0$
 $b^{2}g = p$
 $a^{2} + b^{2}g = 2abV = p$
 $= 0 \Rightarrow a=0 \text{ or } b=0$
 $b^{2}g = p$
 $a^{2} + b^{2}g = 2abV = p$
 $= 0 \Rightarrow a=0 \text{ or } b=0$
 $b^{2}g = p$
 $a^{2} + b^{2}g = 2abV = p$
 $= 0 \Rightarrow a=0 \text{ or } b=0$
 $b^{2}g = p$
 $a^{2} + b^{2}g = 2abV = a$
 $a^{2} + b^{2}$$

Show
$$F_{\theta} \subseteq E_{\theta}$$
 and determine possibilities
 $F_{\theta} \subseteq [E_{\theta}:F_{\theta}]$.
 $e^{3i\theta} = (e^{i\theta})^{3}$
 $e^{3i\theta} = (e^{i\theta})^{3}$
 $e^{3i\theta} = (e^{i\theta})^{3}$
 $e^{3i\theta} = (e^{i\theta})^{3}$
 $= [reet part] + i(3cos^{2}\theta sin\theta - sin^{2}\theta)$
 $= 3cos^{2}\theta sin\theta - sin^{2}\theta$
 $= 3cos^{2}\theta sin\theta - sin^{2}\theta$
 $= 3in\theta - 4sin^{2}\theta$
 $= 1e^{2}(e^{i\theta})^{3}(e^{i\theta})^{$

Vick tz EIK (Q(t)) and so on ...

$$G = group of invertible 2x2 matrices with entries in Fpn.
i) Show $|G| = (p^{2n} - i)(p^{2n} - p^n)$

$$\begin{bmatrix} \binom{n}{2} \binom{n}{2} \end{bmatrix} \text{ invertible } \iff \begin{bmatrix} n \\ n \end{bmatrix} \text{ and } \begin{bmatrix} n \\ n \end{bmatrix} \text{ linearly independent} \\ p^{2n} - 1 & p^{2n} - p^n \end{bmatrix}$$
2) Show $p = Sylow of G G is isomorphic to (Fpn, +1)$
(Show G has a subgroup isomorphic to (Fpn, +1))
(Fpn,+) $\cong \begin{bmatrix} 1 & n \\ n \end{bmatrix} \text{ since } \begin{bmatrix} 1 & n \\ n \end{bmatrix} \begin{bmatrix} 1 & n \\ n \end{bmatrix} = \begin{bmatrix} 1 & n \\ n \end{bmatrix}$
Fact: F_{px}^{X} is cyclic (more generally, only finite subgroup of F^{X} is cyclic)
(since $x^{d} - i = 0$ has at most d roots)
Haw mony elements of F_{p} have squareroots? cuberoots?
O has a squarerood and cuberoot.
 $F_{px}^{X} \cong \mathbb{Z}/(p - i)\mathbb{Z}$ $\lim_{n \to \infty} 1 = \frac{|G_{n}|}{|Ke_{n}|} = \frac{p^{-1}}{|Ke_{n}|}$
 $x \mapsto x^{2}$ $x \mapsto 2x$
 $Kernel = \begin{bmatrix} 0, \frac{p^{-1}}{2} \\ p^{2} \end{bmatrix} p \equiv 1 \text{ muld}$
 $[ait digid d] \stackrel{(1^{n+1})}{=}, want] \stackrel{(1^{n+1})}{=} [mah] \stackrel{(1^{n+1})}{=} \frac{1}{2} = q^{2} \equiv 1 \text{ mod } 10$
 $I = (A_{1} n) = 1 \text{ then } a^{(4n)} \equiv [mah] a^{(4)} \equiv 1 \pmod{n}$
 $(Alternotively, 1^{2} \equiv 7 (n \cdot 4 10) 1^{2} \equiv 7^{2} \equiv 7^{2} \equiv q (mod 10)$
 $[7^{\frac{1}{2}} = 1^{\frac{1}{2}} \equiv 17 \equiv 7 \pmod{10}$$$

-

- 11 - -