Rings II

Outline

Fields and field extensions (6.12.14, 6.12.15)

- Degree of a field extension, multiplicativity of degree, transcendental extensions (6.12.16)
- Frobenius endomorphism (6.12.10)
- Algebraic closure: of a finite field? Of \mathbb{Q} ? Of \mathbb{R} ?
- Finite subgroup of multiplicative group of a field is cyclic (6.12.5, 6.12.22)
- Automorphisms of $\mathbb{F}_{p^n}^k$ (6.12.19)

Number theory

- Euler's function: multiplicativity, as order of $(\mathbb{Z}/n\mathbb{Z})^*$. (6.13.20)
- Solving congruences modulo n by working in the group of units modulo n. Euler's theorem. Check cases. (6.13.8, 6.13.17)

Symmetric/Hermitian matrices (Linear Algebra Overflow)

- Positive (semi-)definiteness
 - 1. Characterization by eigenvalues (7.9.6)
 - 2. Characterization by factorization (7.5.34)
 - 3. Submatrix criterion ("Sylvester's Criterion") (*)
- Sylvester's law of interia, signature of a quadratic form
- Eigenvalues of a hermitian/symmetric/orthogonal/unitary matrix

Problems

6.12.5 Prove that a finite subgroup of the multiplicative group of a field is cyclic.

6.12.10 Let F be a field of characteristic p > 0. If α is a zero of the polynomial $f(x) = x^p - x + 3$ in an extension field of F, show that f(x) has p distinct zeros in the field $F(\alpha)$.

6.12.14 Exhibit infinitely many pairwise nonisomorphic quadratic extensions of \mathbb{Q} and show they are pairwise nonisomorphic.

6.12.15 Let \mathbb{Q} be the field of rational numbers. For θ a real number, let $F_{\theta} = \mathbb{Q}(\sin \theta)$ and $E_{\theta} = \mathbb{Q}(\sin \frac{\theta}{3})$. Show that E_{θ} is an extension field of F_{θ} and determine all possibilities for $\dim_{F_{\theta}} E_{\theta}$. (Use trigonometric identities.)

6.12.16 Show that the field $\mathbb{Q}(t_1, ..., t_n)$ of rational functions in n variables over the rational numbers is isomorphic to a subfield of \mathbb{R} .

6.12.19 Let \mathbb{F} be a finite field of cardinality p^n , with p prime and n > 0, and let G be

the group of invertible 2×2 matrices with coefficients in \mathbb{F} . (1) Prove that G has order $(p^{2n}-1)(p^{2n}-p^n)$. (2) Show that any p-Sylow subgroup of G is isomorphic to the additive group of F.

6.12.22 Let p be a prime and \mathbb{F}_p the field of p elements. How many elements of \mathbb{F}_p have square roots in \mathbb{F}_p ? Cube roots? (You may separate into cases for p.)

6.13.8 Let $n \ge 2$ be an integer such that $2^n + n^2$ is prime. Prove that

$$n \equiv 3 \mod 6.$$

6.13.17 Determine the rightmost decimal digit of

$$A = 17^{17^{17}}$$

6.13.20 Let ϕ be Euler's function. Let a and k be two integers, with a > 1, k > 0. Prove that k divides $\phi(a^k - 1)$.

7.5.34 Let A and B be real $n \times n$ symmetric matrices with B positive definite. Consider the function defined for $x \neq 0$ by $G(x) = \frac{\langle Ax, x \rangle}{\langle Bx, x \rangle}$.

- Show that G attains its maximum value.
- Show that any maximum point U for G is an eigenvector for a certain matrix related to A and B and show which matrix.

7.9.6 A real symmetric $n \times n$ matrix is called *positive semi-definite* if $x^t A x \ge 0$ for all $x \in \mathbb{R}^n$. Prove that A is positive semi-definite if and only if tr $AB \ge 0$ for every real symmetric positive semi-definite $n \times n$ matrix B.

(*) "Sylvester's Criterion": Given a symmetric matrix $A = (a_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{R})$, let A_k denote the upper left submatrix $A_k = (a_{ij})_{1 \le i,j \le k}$.

- Prove by induction on n that A is positive definite if and only if $Det(A_k) > 0$ for k = 1, ..., n.
- Prove that the analogous statement fails for positive semi-definite matrices. That is, find n and $A \in M_n(\mathbb{R})$ symmetric such that $\text{Det}(A_k) \geq 0$ for all $1 \leq k \leq n$, but $v^t A v < 0$ for some $v \in \mathbb{R}^n$.