Outline

Fields and field extensions (6.12.14, 6.12.15)

- Degree of a field extension, multiplicativity of degree, transcendental extensions (6.12.16)
- Frobenius endomorphism (6.12.10)
- Algebraic closure: of a finite field? Of \mathbb{Q} ? Of \mathbb{R} ?
- Finite subgroup of multiplicative group of a field is cyclic (6.12.5, 6.12.22)
- Automorphisms of $\mathbb{F}_{p^{n}}^{k}(6.12 .19)$

Number theory

- Euler's function: multiplicativity, as order of $(\mathbb{Z} / n \mathbb{Z})^{*}$. (6.13.20)
- Solving congruences modulo n by working in the group of units modulo n. Euler's theorem. Check cases. (6.13.8, 6.13.17)
Symmetric/Hermitian matrices (Linear Algebra Overflow)
- Positive (semi-)definiteness

1. Characterization by eigenvalues (7.9.6)
2. Characterization by factorization (7.5.34)
3. Submatrix criterion ("Sylvester's Criterion") (*)

- Sylvester's law of interia, signature of a quadratic form
- Eigenvalues of a hermitian/symmetric/orthogonal/unitary matrix

Problems

6.12.5 Prove that a finite subgroup of the multiplicative group of a field is cyclic.
6.12.10 Let F be a field of characteristic $p>0$. If α is a zero of the polynomial $f(x)=$ $x^{p}-x+3$ in an extension field of F, show that $f(x)$ has p distinct zeros in the field $F(\alpha)$.
6.12.14 Exhibit infinitely many pairwise nonisomorphic quadratic extensions of \mathbb{Q} and show they are pairwise nonisomorphic.
6.12.15 Let \mathbb{Q} be the field of rational numbers. For θ a real number, let $F_{\theta}=\mathbb{Q}(\sin \theta)$ and $E_{\theta}=\mathbb{Q}\left(\sin \frac{\theta}{3}\right)$. Show that E_{θ} is an extension field of F_{θ} and determine all possibilities for $\operatorname{dim}_{F_{\theta}} E_{\theta}$. (Use trigonometric identities.)
6.12.16 Show that the field $\mathbb{Q}\left(t_{1}, \ldots, t_{n}\right)$ of rational functions in n variables over the rational numbers is isomorphic to a subfield of \mathbb{R}.
6.12.19 Let \mathbb{F} be a finite field of cardinality p^{n}, with p prime and $n>0$, and let G be
the group of invertible 2×2 matrices with coefficients in \mathbb{F}. (1) Prove that G has order $\left(p^{2 n}-1\right)\left(p^{2 n}-p^{n}\right)$. (2) Show that any p-Sylow subgroup of G is isomorphic to the additive group of F.
6.12.22 Let p be a prime and \mathbb{F}_{p} the field of p elements. How many elements of \mathbb{F}_{p} have square roots in \mathbb{F}_{p} ? Cube roots? (You may separate into cases for p.)
6.13.8 Let $n \geq 2$ be an integer such that $2^{n}+n^{2}$ is prime. Prove that

$$
n \equiv 3 \quad \bmod 6 .
$$

6.13.17 Determine the rightmost decimal digit of

$$
A=17^{17^{17}}
$$

6.13.20 Let ϕ be Euler's function. Let a and k be two integers, with $a>1, k>0$. Prove that k divides $\phi\left(a^{k}-1\right)$.
7.5.34 Let A and B be real $n \times n$ symmetric matrices with B positive definite. Consider the function defined for $x \neq 0$ by $G(x)=\frac{\langle A x, x\rangle}{\langle B x, x\rangle}$.

- Show that G attains its maximum value.
- Show that any maximum point U for G is an eigenvector for a certain matrix related to A and B and show which matrix.
7.9.6 A real symmetric $n \times n$ matrix is called positive semi-definite if $x^{t} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. Prove that A is positive semi-definite if and only if $\operatorname{tr} A B \geq 0$ for every real symmetric positive semi-definite $n \times n$ matrix B.
(*) "Sylvester's Criterion": Given a symmetric matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$, let A_{k} denote the upper left submatrix $A_{k}=\left(a_{i j}\right)_{1 \leq i, j \leq k}$.
- Prove by induction on n that A is positive definite if and only if $\operatorname{Det}\left(A_{k}\right)>0$ for $k=1, \ldots, n$.
- Prove that the analogous statement fails for positive semi-definite matrices. That is, find n and $A \in M_{n}(\mathbb{R})$ symmetric such that $\operatorname{Det}\left(A_{k}\right) \geq 0$ for all $1 \leq k \leq n$, but $v^{t} A v<0$ for some $v \in \mathbb{R}^{n}$.

