Outline

See "Prelim Workshop Lectures Notes" for review of basic definitions. (S85 14, F06 4A)

Fields \subsetneq Euclidean Domains \subsetneq PIDs \subsetneq UFDs \subsetneq integral domains (S03 9A, 6.10.5, 6.10.15)

- Using a Euclidean algorithm to determine gcd and remainder. Examples such as $\mathbb{Z}, k[x]$ where k a field, and the Gaussian integers.
- Prime and maximal ideals. Characterization by quotients. Prime ideal is maximal in PID.
- Local rings. A ring is local iff the set of non-units forms an ideal.
- An element is prime \leftrightarrow irreducible in UFD. Only \rightarrow in general integral domain.
- Quadratic integer rings

Polynomials (F05 4A, 6.11.2, 6.11.9, 6.11.24, 6.11.28)

- Euclidean algorithm for $k[x]$ when k a field. In $R[x]$ for general R, can use division algorithm to divide by $f(x)$ when leading coefficient of f is a unit.
- Formulas for coefficients in terms of roots ("Vieta's formulas")
- Cyclotomic polynomials/irreducible factorization of $x^{n}-1$
- Rational root theorem
- Gauss' lemma
- Proving irreducibility of polynomials: Eisenstein's criterion. Show irreducibility over $\mathbb{Z}_{p}[x]$ for any prime p that does not divide leading coefficient. Substitute x for $x+\alpha$ for some α and consider the resulting polynomial. If degree 2 or 3: reducible polynomial must have a root in the underlying ring. If degree 4: assume factorization into quadratic polynomials with undetermined coefficients, show there is no solution (and also check no root).

Problems

Spring 198514 Let F be a field and let $M_{n}(F)$ be the ring of $n \times n$ matrices with coefficients in F. Prove that $M_{n}(F)$ has no nontrivial (two-sided) ideals. What can you conclude about ring homomorphisms from $M_{n}(F)$?

Spring 2003 9A Let R be the set of complex numbers of the form

$$
a+3 b i, a, b \in \mathbb{Z}
$$

Prove that R is a subring of \mathbb{C}, and that R is an integral domain but not a unique factorization domain.

Fall 2005 4A Let m and n be positive integers. Prove that the ideal generated by $x^{m}-1$ and $x^{n}-1$ in $\mathbb{Z}[x]$ is principal.

Fall 2006 4A Let R be a finite commutative ring with unity which has no zero-divisors and contains at least one element other than 0 . Prove that R is a field.
6.10.5 Let F be a field and X a finite set. Let $R(X, F)$ be the ring of all functions from X to F, endowed with pointwise operations. What are the maximal ideals of $R(X, F)$?
6.10.15 Let R be a principal ideal domain and let I and J be nonzero ideals. Show that $I J=I \cap J$ if and only if $I+J=R$.
6.11.2 By the fundamental theorem of algebra, the polynomial $x^{3}+2 x^{2}+7 x+1$ has three complex roots, α_{1}, α_{2} and α_{3}. Compute $\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}$.
6.11.9 Let I be the ideal in $\mathbb{Z}[x]$ generated by 5 and $x^{3}+x+1$. Is I prime?
6.11.24 Let $f_{n}(x)=x^{n-1}+x^{n-2}+\ldots+x+1$. Show that $f_{n}(x)$ is irreducible in $\mathbb{Q}[x]$ if n is prime. What if n is composite?
6.11.28 Factor $x^{4}+x^{3}+x+3$ completely in $\mathbb{Z}_{5}[x]$.

