Outline

Continuous, real-valued functions on subsets of \mathbb{R}

- Intermediate value theorem, Mean value theorem
- Compactness properties

Sequences of real numbers

- lim sup and lim inf
- Monotone sequences

Other techniques

- Inequalities (Cauchy-Schwarz, Jensen's/convexity)
- Taylor's theorem with remainder

Multivariable versions

- Gradient, Hessian, Jacobian
- The implicit and inverse function theorems

Problems

1.1.10-Fall 198211

1. Prove that there is no continuous map from the closed interval $[0,1]$ onto (i.e. surjection) the open interval $(0,1)$.
2. Find a continuous surjective map from the open interval $(0,1)$ onto the closed interval $[0,1]$.
3. Prove that no map in Part 2 can be bijective.
1.5.3-Fall 19904 Suppose f is a continuous real valued function. Show that

$$
\int_{0}^{1} f(x) x^{2} d x=\frac{1}{3} f(\xi)
$$

for some $\xi \in[0,1]$.
1.3.8-Spring 2003 6A Let x_{n} be a sequence of real numbers so that $\lim _{n \rightarrow \infty} 2 x_{n+1}-x_{n}=x$. Show that $\lim _{n \rightarrow \infty} x_{n}=x$.
1.3.9 - Spring 20055 Let a and x_{0} be positive numbers, and define the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ recursively by

$$
x_{n}=\frac{1}{2}\left(x_{n-1}+\frac{a}{x_{n-1}}\right)
$$

Show this sequence converges and find its limit.
1.5.9 - Fall 198515 Let $0 \leq a \leq 1$ be given. Determine all nonnegative continuous functions f on $[0,1]$ which satisfy the following three conditions:

$$
\int_{0}^{1} f(x) d x=1, \int_{0}^{1} x f(x) d x=a, \int_{0}^{1} x^{2} f(x) d x=a^{2}
$$

1.5.9 - Fall 198515 Let f be a twice continuously differentiable function on the real line. Assume f is bounded with bounded second derivative. Let

$$
A=\sup _{x \in \mathbb{R}}|f(x)|, B=\sup _{x \in \mathbb{R}}\left|f^{\prime \prime}(x)\right| .
$$

Prove that

$$
\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| \leq 2 \sqrt{A B}
$$

2.2.43 - Spring 199612 Let $M_{2 \times 2}$ be the space of 2×2 matrices over \mathbb{R}, identified in the usual way with \mathbb{R}^{4}. Let the function F from $M_{2 \times 2}$ to $M_{2 \times 2}$ be defined

$$
F(X)=X+X^{2}
$$

Prove that the range of F contains a neighborhood of the origin.

